Осциляційна фероконвекція Максвелла-Каттанео в щільноупакованому обертовому пористому середовищі, насиченому в’язкопружною магнітною рідиною

  • Насір Ахмед Presidency UniversityФакультет математики, Президентський коледж, Кемпапура, Хеббал, Бангалор, Індія https://orcid.org/0000-0002-5327-9362
  • С. Марутаманікандан Факультет математики, інженерна школа, Президентський університет, Бенгалуру, Індія https://orcid.org/0000-0001-9811-0117
Ключові слова: конвекція, обертання, в'язкопружні рідини, рівняння Максвелла, пористі середовища, рівняння Нав'є-Стокса для нестисливих в'язких рідин

Анотація

За допомогою класичного аналізу стабільності на початку фероконвекції обертового пористого середовища досліджено комбінований ефект другого звуку та в’язкопружності. Передбачається локальна теплова рівновага між твердою матрицею та рідиною. Поточна проблема розглядається за допомогою аналітичного підходу з урахуванням відповідних граничних умов. Техніка аналізу нормального режиму використовується для отримання критичних значень для обох видів нестабільностей, а саме стаціонарної та коливальної. Ми помітили, що коливальний режим нестабільності має перевагу над стаціонарним режимом нестабільності. Ми виявили, що магнітні сили, другий звук, нелінійність намагніченості, число Вадаша, релаксація напруги через в’язкопружність і число Тейлора-Дарсі сприяють розвитку осцилюючої пористої фероконвекції середовища, тоді як затримка деформації відкладає початок коливальної пористої фероконвекції середовища. Також відзначено вплив розміру конвекційної комірки за різними параметрами та частотою коливань. Ця проблема матиме значні можливі технологічні застосування, у яких задіяні в’язкопружні магнітні рідини.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

M.T. Shliomis, “Magnetic fluid,” Sov. Phys. Usp. 17, 53–169 (1974). https://doi.org/10.1070/PU1974v017n02ABEH004332

R.E. Rosensweig, Ferrohydrodynamics, (Cambridge University Press, Cambridge, 1985).

R.E. Rosensweig, J.W. Nestor, and R.S. Timmins, Ferrohydrodynamic Fluids for Direct Conversion of Heat Energy. Materials Associated with Direct Energy Conversion, (Avco Corporation, Wilmington, 1965).

R.E. Rosensweig, Ferrohydrodynamics, (Dover Publications, Courier Corporation, Mineola, New York, 1997).

B.A. Finlayson, “Convective instability of ferromagnetic fluids,” Journal of Fluid Mechanics, 40(4), 753–767 (1970). https://doi.org/10.1017/S0022112070000423

L. Schwab, U. Hildebrandt, and K. Stierstadt, “Magnetic Bénard convection,” Journal of Magnetism and Magnetic Materials, 39(2), 113–124 (1983). https://doi.org/10.1016/0304-8853(83)90412-2

P.J. Stiles, and M. Kagan, “Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field,” Journal of magnetism and magnetic materials, 85(1), 196–198 (1990). https://doi.org/10.1016/0304-8853(90)90050-Z

D.P. Lalas, and S. Carmi, “Thermoconvective stability of ferrofluids”, Phys. Fluids, 14(2), 436-437 (1971). https://doi.org/10.1063/1.1693446

A. Mahajan, and M.K. Sharma, “Penetrative convection in magnetic nanofluids via internal heating”, Phys. Fluids, 29, 034101 (2017). https://doi.org/10.1063/1.4977091

N.M. Thomas, and S. Maruthamanikandan, “Gravity modulation effect on ferromagnetic convection in a Darcy-Brinkman layer of porous medium,” J. Phys. Conf. Ser. 1139(1), 1–10 (2018). https://doi.org/10.1088/1742-6596/1139/1/012022

S. Mathew, S. Maruthamanikandan, and S.N. Smita, “Gravitational instability in a ferromagnetic fluid saturated porous medium with non-classical heat conduction”, IOSR Journal of Mathematics, 6, 7–18 (2013). https://doi.org/10.9790/5728-0610718

D. Laroze, and H. Pleiner, “Thermal convection in a nonlinear non-Newtonian magnetic fluid,” Communications in Nonlinear Science and Numerical Simulation, 26(3), 167–183 (2015). https://doi.org/10.1016/j.cnsns.2015.01.002

C. Balaji, C. Rudresha, V.V. Shree, and S. Maruthamanikandan, “Ferroconvection in a sparsely distributed porous medium with time-dependent sinusoidal magnetic field,” Journal of Mines, Metals and Fuels, 70(3A), 28-34 (2022). https://doi.org/10.18311/jmmf/2022/30664

V.V. Shree, C. Rudresha, C. Balaji, and S. Maruthamanikandan, “Effect of MFD viscosity on ferroconvection in a fluid saturated porous medium with variable gravity”, Journal of Mines, Metals and Fuels, 70(3A), 98-103 (2022). https://doi.org/10.18311/jmmf/2022/30675

N. Ahmed, S. Maruthamanikandan, and B.R. Nagasmitha, “Oscillatory porous medium ferroconvection in a viscoelastic magnetic fluid with non-classical heat conduction”, East Eur. J. Phys. 2, 296-309 (2023). https://doi.org/10.26565/2312-4334-2023-2-34

J.G. Oldroyd, “On the formulation of rheological equations of state,” Proc. R. Soc. Lond. A, 200, 523–541 (1950). https://doi.org/10.1098/rspa.1950.0035

T. Green, “Oscillating convection in an elasticoviscous liquid,” Phys. Fluids, 11, 1410–1414 (1968). https://doi.org/10.1063/1.1692123

M.S. Malashetty, M.S. Swamy, and W. Sidram, “Thermal convection in a rotating viscoelastic fluid saturated porous layer,” International Journal of Heat and Mass Transfer, 53(25), 5747–5756 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.08.008

J. Kang, C. Fu, and W. Tan, “Thermal convective instability of viscoelastic fluids in a rotating porous layer heated from below,” Journal of Non-Newtonian Fluid Mechanics, 166(1), 93–101 (2011). https://doi.org/10.1016/j.jnnfm.2010.10.008

D. Laroze, J. Martinez-Mardones, and H. Pleiner, “Bénard-Marangoni instability in a viscoelastic ferrofluid,” The European Physical Journal Special Topics, 219, 71–80 (2013). https://doi.org/10.1140/epjst/e2013-01782-6

B.S. Bhadauria, and P. Kiran, “Heat and mass transfer for oscillatory convection in a binary viscoelastic fluid layer subjected to temperature modulation at the boundaries,” International Communications in Heat and Mass Transfer, 58, 166–175 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.08.031

L.S. de B. Alves, S.C. Hirata, and M.N. Ouarzazi, “Linear onset of convective instability for Rayleigh-Bénard-Couette flows of viscoelastic fluids,” Journal of Non-Newtonian Fluid Mechanics, 231, 79–90 (2016). https://doi.org/10.1016/j.jnnfm.2016.03.007

S. Nadeem, S. Ahmad, and N. Muhammad, “Cattaneo-Christov flux in the flow of a viscoelastic fluid in the presence of Newtonian heating,” Journal of Molecular liquids, 237, 180–184 (2017). https://doi.org/10.1016/j.molliq.2017.04.080

M.N. Mahmud, Z. Siri, J.A. Vélez, L.M. Pérez, and D. Laroze, “Chaotic convection in an Oldroyd viscoelastic fluid in saturated porous medium with feedback control,” Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(7), 73109–73121 (2020). https://doi.org/10.1063/5.0002846

R. Sharma, and P.K. Mondal, “Thermosolutal Marangoni instability in a viscoelastic liquid film: Effect of heating from the free surface,” Journal of Fluid Mechanics, 909, 1–24 (2021). https://doi.org/10.1017/jfm.2020.880

K. Song, G. Jin, D. Jia, R. Hua, T. Ye, Z. Sun, and Z. Liu, “Effects of viscoelastic fluid on noise reduction of the flow over a circular cylinder,” Journal of Fluids and Structures, 122, 103976 (2023).

J.S. Dhiman, P.M. Patil, and S. Sood, “Modified stability analysis of double-diffusive convection in viscoelastic fluid layer saturating porous media,” Heat Transfer, 52, 1497-1528 (2023). https://doi.org/10.1002/htj.22752

S. Saravanan, and T. Sivakumar, “Onset of filtration convection in a vibrating medium: The Brinkman model,” Physics of Fluids, 22(3), 34104–34120 (2010). https://doi.org/10.1063/1.3358461

C. Rudresha, C. Balaji, V. Vidya Shree, and S. Maruthamanikandan, “Effect of electric field modulation on electroconvection in a dielectric fluid-saturated porous medium”, Journal of Mines, Metals and Fuels, 70(3A), 35–41 (2022). https://doi.org/10.18311/jmmf/2022/30665

M.S. Malashetty, and M. Swamy, “The onset of convection in a viscoelastic liquid saturated anisotropic porous layer,” Transport in Porous Media, 67(2), 203–218 (2007). htps://doi.org/10.1007/s11242-006-9001-7

C. Rudresha, C. Balaji, V.V. Shree, and S. Maruthamanikandan, “Effect of electric field modulation on the onset of electroconvection in a dielectric fluid in an anisotropic porous layer,”, Journal of Computational Applied Mechanics, 53(4), 510 523 (2022). https://doi.org/10.22059/jcamech.2022.348183.753

G. Lebon, and A. Cloot, “Benard-Marangoni instability in a Maxwell-Cattaneo fluid,”, Physica A, 105, 361–364 (1984). https://doi.org/10.1016/0375-9601(84)90281-0

S. Maruthamanikandan, and S.S. Nagouda, “Convective heat transfer in Maxwell-Cattaneo dielectric fluids,” International Journal of Computational Engineering Research, 3(3), 347–355 (2013).

S. Mathew, and S. Maruthamanikandan, “Oscillatory porous medium ferroconvection with Maxwell-Cattaneo law of heat conduction”, J. Phys. Conf. Ser, 1850(1), 012024 (2021). https://doi.org/10.1088/1742-6596/1850/1/012024

N. Ahmed, and S. Maruthamanikandan, “Oscillatory Thermoconvective Instability in a Viscoelastic Magnetic Fluid Saturated Anisotropic Porous Medium with Second Sound,” Eur. Chem. Bull. 12(6), 899–928 (2023).

R. Friedrich, “Einflug der Prandtl-Zahl auf die Zellularkonvektion in einem rotierenden mit Fluid gesättigten porösen medium,” Z. Angew. Math. Mech. 63, 246–249 (1983).

P.R. Patil, and G. Vaidyanathan, “On setting up of convective currents in a rotating porous medium under the influence of variable viscosity,” Int. J. Eng. Sci. 21, 123–130 (1983). https://doi.org/10.1016/0020-7225(83)90004-6

E. Palm, and A. Tyvand, “Thermal convection in a rotating porous layer,” Z. Angew. Math. Phys. 35, 122–123 (1984). https://doi.org/10.1007/BF00945182

J.J. Jou, and J.S. Liaw, “Thermal convection in a porous medium subject to transient heating and rotating,” Int. J. Heat Mass Transfer, 30, 208–211 (1987).

Y. Qin, and P.N. Kaloni, “Nonlinear stability problem of a rotating porous layer,” Quart. Appl. Math. 53(1), 129–142 (1995). https://www.ams.org/journals/qam/1995-53-01/S0033-569X-1995-1315452-3/S0033-569X-1995-1315452-3.pdf

P. Vadasz, “Coriolis effect on gravity-driven convection in a rotating porous layer heated from below,” J. Fluid Mech. 376, 351 375 (1998). https://doi.org/10.1017/S0022112098002961

B. Straughan, “A sharp nonlinear stability threshold in rotating porous convection,” Proc. Roy. Soc. Lond. A, 457, 87–93 (2001). https://doi.org/10.1098/rspa.2000.0657

S. Govender, “Oscillating convection induced by gravity and centrifugal forces in a rotating porous layer distant from the axis of rotation,” Int. J. Eng. Sci. 41, 539 545 (2003). https://doi.org/10.1016/S0020-7225(02)00182-9

S. Govender, “Coriolis effect on the linear stability of convection in a porous layer placed far away from the axis of rotation,” Transport Porous Media, Vol. 51, pp. 315–326, 2003.

Th. Desaive, M. Hennenberg, and G. Lebon, “Thermal instability of a rotating saturated porous medium heated from below and submitted to rotation,” Eur. Phys. J. B, 29, 641–647 (2002). https://doi.org/10.1140/epjb/e2002-00348-9

B. Straughan, “Global non-linear stability in porous convection with a thermal non-equilibrium model,” Proc. Roy. Soc. Lond. A, 462, 409 418 (2006). https://doi.org/10.1098/rspa.2005.1555

M.S. Malashetty, and M. Swamy, “The effect of rotation on the onset of convection in a horizontal anisotropic porous layer,” Int. J. Therm. Sci. 46, 1023–1032 (2007). https://doi.org/10.1016/j.ijthermalsci.2006.12.007

J.S. Dhiman, and S, Sood, “Linear and weakly non-linear stability analysis of oscillatory convection in rotating ferrofluid layer,” Applied Mathematics and Computation, 430, 127239 (2022). https://doi.org/10.1016/j.amc.2022.127239

P.K. Nadian, “Thermoconvection in a kuvshiniski ferrofluid in presence of rotation and varying gravitational field through a porous medium,” South East Asian Journal of Mathematics & Mathematical Sciences, 19(1), 433-446 (2023). https://doi.org/10.56827/SEAJMMS.2023.1901.33

L.M. Pérez, D. Laroze, P. Díaz, J. Martinez-Mardones, and H.L. Mancini, “Rotating convection in a viscoelastic magnetic fluid,” Journal of Magnetism and Magnetic Materials, 364, 98–105 (2014). https://doi.org/10.1016/j.jmmm.2014.04.027

Опубліковано
2024-06-01
Цитовано
Як цитувати
Ахмед, Н., & Марутаманікандан, С. (2024). Осциляційна фероконвекція Максвелла-Каттанео в щільноупакованому обертовому пористому середовищі, насиченому в’язкопружною магнітною рідиною. Східно-європейський фізичний журнал, (2), 150-160. https://doi.org/10.26565/2312-4334-2024-2-14