Oscillatory Porous Medium Ferroconvection in a Viscoelastic Magnetic Fluid with Non-Classical Heat Conduction

Keywords: Convection, Maxwell equations, Navier-Stokes equations for incompressible viscous fluids, Porous media, Viscoelastic fluids, Ferroconvection

Abstract

The classical stability analysis is used to examine the combined effect of viscoelasticity and the second sound on the onset of porous medium ferroconvection. The fluid and solid matrix are assumed to be in local thermal equilibrium. Considering the boundary conditions appropriate for an analytical approach, the critical values pertaining to both stationary and oscillatory instabilities are obtained by means of the normal mode analysis. It is observed that the oscillatory mode of instability is preferred to the stationary mode of instability. It is shown that the oscillatory porous medium ferroconvection is advanced through the magnetic forces, nonlinearity in magnetization, stress relaxation due to viscoelasticity, and the second sound. On the other hand, it is observed that the presence of strain retardation and porous medium delays the onset of oscillatory porous medium ferroconvection. The dual nature of the Prandtl number on the Rayleigh number with respect to the Cattaneo number is also delineated. The effect of various parameters on the size of the convection cell and the frequency of oscillations is also discussed. This problem may have possible implications for technological applications wherein viscoelastic magnetic fluids are involved.

Downloads

Download data is not yet available.

References

R. Kaiser, and G. Miskolczy, “Some applications of ferrofluid magnetic colloids,” IEEE Transactions on Magnetics, 6, 694-698 (1970). https://doi.org/10.1109/TMAG.1970.1066834

K. Raj, and A.F. Chorney, “Ferrofluid technology-an overview,” Indian J Eng Mater Sci. 5(6), 372‐389 (1998). http://nopr.niscpr.res.in/bitstream/123456789/29661/1/IJEMS%205%286%29%20372-389.pdf

C. Scherer, and A.M.F. Neto, “Ferrofluids: properties and applications,” Braz. J. Phys. 35(3), 718‐727 (2005). https://doi.org/10.1590/S0103-97332005000400018

H.W. Muller, and L. Mario, Ferrofluid Dynamics, in: Ferrofluids magnetically controllable fluids and their applications, edited by S. Odenbach, (Springer, 2002), pp.112-123, https://link.springer.com/book/10.1007/3-540-45646-5

R. Moskowitz, “Dynamic Sealing with Magnetic Fluids,” Tribology Transactions, 18, 135-143 (1975). https://doi.org/10.1080/05698197508982756

Y. Morimoto, M. Akimoto, and Y. Yotsumoto, “Dispersion State of Protein-stabilized Magnetic Emulsions,” Chemical and Pharmaceutical Bulletin, 30, 3024-3027 (1982). https://doi.org/10.1248/CPB.30.3024

R.E. Rosensweig, Ferrohydrodynamics, (Cambridge University Press, Cambridge, 1985).

B.A. Finlayson, “Convective instability of ferromagnetic fluids,” J. Fluid Mech. 40, 753-767, (1970). https://doi.org/10.1017/S0022112070000423

D.P. Lalas, and S. Carmi, “Thermoconvective stability of ferrofluids,” Phys. Fluids, 14(2), 436-437 (1971). https://doi.org/10.1063/1.1693446

Nisha Mary Thomas, and S. Maruthamanikandan, “Gravity modulation effect on ferromagnetic convection in a Darcy-Brinkman layer of porous medium,” J. Phys.: Conf. Series, 1139, 012022 (2018). https://doi.org/10.1088/1742-6596/1139/1/012022

Soya Mathew, and S. Maruthamanikandan, “Darcy-Brinkman ferroconvection with temperature dependent viscosity,” J. Phys.: Conf. Series, 1139, 012023, (2018). http://dx.doi.org/10.1088/1742-6596/1139/1/012023

S. Maruthamanikandan, Nisha Mary Thomas, and Soya Mathew, “Thermorheological and magnetorheological effects on Marangoni-ferroconvection with internal heat generation,” J. Phys.: Conf. Series, 1139, 012024, (2018). https://doi.org/10.1088/1742-6596%2F1139%2F1%2F012024

V. Vidya Shree, C. Rudresha, C. Balaji, and S. Maruthamanikandan, “Effect of MFD viscosity on ferroconvection in a fluid saturated porous medium with variable gravity,” Journal of Mines, Metals and Fuels, 70(3A), 98-103, (2022). http://dx.doi.org/10.26565/2312-4334-2022-4-10

R.B. Bird, C. Armstrong, and O. Massager, Dynamics of Polymeric Liquids, vol. 1,2, 2nd edn. (Wiley, New York, 1987). https://doi.org/10.1002/bbpc.19870911221

D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids, (Springer, New York), (1990), https://doi.org/10.1007/978-1-4612-4462-2

J.G. Oldroyd, “On the formulation of rheological equations of state,” Proc. R. Soc. Lond. A, 200, 523–541 (1950). https://doi.org/10.1098/rspa.1950.0035

T. Green, “Oscillating convection in an elasticoviscous liquid,” Phys. Fluids, 11, 1410-1412 (1968). https://doi.org/10.1063/1.1692123

M.S. Swamy, N.B. Naduvinamani, and W. Sidram, “Onset of Darcy–Brinkman convection in a binary viscoelastic fluid saturated porous layer,” Transp. Porous Med. 94(1), 339–357 (2012). https://doi.org/10.1007/s11242-012-0008-y

D.S. Chandrasekharaiah, “Thermoelasticity with Second Sound: A Review,” Applied Mechanics Reviews, 39, 355-376 (1986). https://doi.org/10.1115/1.3143705

M.E. Gurtin, and A.C. Pipkin, “A general theory of heat conduction with finite wave speeds,” Arch. Ration. Mech. Anal. 31(2), 113-126 (1968). https://doi.org/10.1007/BF00281373

B. Straughan, and F. Franchi, “Bѐnard convection and the cattaneo law of heat conduction,” Proc. R. Soc. Edinburgh Sect. A Math. 96(1-2), 175-178 (1984). https://doi.org/10.1017/S0308210500020564

Soya Mathew, and S. Maruthamanikandan, “Oscillatory porous medium ferroconvection with Maxwell-Cattaneo law of heat conduction,” J. Phys. Conf. Ser. (1), 012024, (2021). https://doi.org/10.1088/1742-6596/1850/1/012024

Soya Mathew, S. Maruthamanikandan, and S.S. Nagouda, “Gravitaional Instability in a Ferromagnetic Fluid Saturated Porous Medium with Non-Classical Heat Conduction,” IOSR Journal of Mathematics, (IOSR-JM), 6(1), 07-18 (2013). http://dx.doi.org/10.9790/5728-0610718

B. Straughan, “Oscillatory convection and the Cattaneo law of heat conduction,” Ricerche mat. 58, 157-162 (2009). https://doi.org/10.1007/s11587-009-0055-z

S.S. Nagouda, and S. Pranesh, “Rayleigh-Bѐnard convection in a second-order fluid with Maxwell-Cattaneo Law,” The Bulletin of Society for Mathematical Services and Standards, 2, 24-32 (2012). https://doi.org/10.18052/WWW.SCIPRESS.COM%2FBSMASS.2.24

Published
2023-06-02
Cited
How to Cite
Ahmed, N., Maruthamanikandan , S., & Nagasmitha, B. (2023). Oscillatory Porous Medium Ferroconvection in a Viscoelastic Magnetic Fluid with Non-Classical Heat Conduction. East European Journal of Physics, (2), 296-309. https://doi.org/10.26565/2312-4334-2023-2-34