Чисельне дослідження сонячної батареї на основі 25,459% легованого неорганічного перовскіту, що не містить CsSnGeI3, шляхом моделювання пристрою
Анотація
Токсичний свинцевий компонент, а також дорогий і менш стабільний spiro-OMeTAD у перовскітних сонячних елементах (PSC) створюють велику перешкоду для їх комерційної життєздатності. У цьому дослідженні було запропоновано та реалізовано обчислювальний підхід до моделювання та симуляції всіх неорганічних перовскітних сонячних елементів на основі цезію олова-германію (CsSnGeI3) за допомогою інструменту імітатора ємності сонячних елементів (SCAPS–1D). Допований алюмінієм оксид цинку (ZnO:Al) і йодид міді (CuI) використовувалися як транспортні шари електронів і дірок (ETL і HTL) відповідно. Початковий пристрій без будь-якої оптимізації дав ефективність перетворення потужності (PCE) 24,826%, коефіцієнт заповнення (FF) 86,336%, щільність струму короткого замикання (Jsc) 26,174 мА/см2 і напругу холостого ходу (Voc) 1,099 В. При зміні вищезазначених параметрів індивідуально, зберігаючи інші незмінними, оптимальні значення становлять 1000 нм для товщини поглинача, 1014 см-3 для щільності дефектів шару поглинача, 50 нм для товщини ETL, 1017 см‑3 для концентрації легування ETL і 260 K для температури . Моделювання з цими оптимізованими значеннями призводить до PCE 25,459%, Voc 1,145 В, Jsc 25,241 мА/см2 і FF 88,060%. Ці результати вказують на те, що CsSnGeI3 є життєздатним альтернативним поглинаючим шаром для використання в конструкції перовскітного сонячного елемента з високим PCE.
Завантаження
Посилання
S. Ameen, M.A. Rub, S.A. Kosa, K.A. Alamry, M.S. Akhtar, H.S. Shin, H.K. Seo, A.M. Asiri, and M.K. Nazeeruddin. ChemSusChem, 9, 10 (2016). https://doi.org/10.1002/cssc.201501228
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of American Chemical Society, 131, 6050 (2009). https://doi.org/10.1021/ja809598r
M.A. Green, A. Ho-Baillie, and H.J. Snaith, Nature Photonics, 8, 506 (2014). https://doi.org/10.1038/nphoton.2014.134
Z. Qu, F. Ma, Y. Zhao, X. Chu, S. Yu, and J. You, Chinese Physics Letters, 38, 107801 (2021). https://doi.org/10.1088/0256-307X/38/10/107801
B. Ai, Z. Fan, and Z.J. Wong, Microsystems & Nanoengineering, 8, 5 (2022). https://doi.org/10.1038/s41378-021-00334-2
Z.N. Jahanbakhshi, Z.M. Borhani, and M.R. Nateghi, Thin Solid Films, 671, 139 (2019). https://doi.org/10.1016/j.tsf.2018.12.029
E. Danladi, M. Kashif, A. Ichoja, and B.B. Ayiya, Transactions of Tianjin University, 28(5), (2022). https://doi.org/10.1007/s12209-022-00343-w
G. Pindolia, S. M. Shinde, and P.K. Jha, Solar Energy, 236, 802 (2022). https://doi.org/10.1016/j.solener.2022.03.053
W. Ke, and M.G. Kanatzidis, Nature Communications, 10, 965 (2019). https://doi.org/10.1038/s41467-019-08918-3
N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, and H.J. Snaith, Energy & Environmental Science, 7, 3061 (2014). https://doi.org/10.1039/C4EE01076K
M. Roknuzzaman, K. Ostrikov, H. Wang, A. Du, and T. Tesfamichael, Scientific Reports, 7, 14025 (2017). https://doi.org/10.1038/s41598-017-13172-y
D. Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie, P.P. Boix, S. Mhaisalkar, and N. Mathews, Journal of Physical Chemistry C, 119, 1763–1767 (2015). https://doi.org/10.1021/jp5126624
M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S.G. Mhaisalkar, and N. Mathews, Advanced Materials, 26, 7122–7127 (2014). https://doi.org/10.1002/adma.201401991
B. Wu, Y. Zhou, G. Xing, Q. Xu, H.F. Garces, A. Solanki, T.W. Goh, N.P. Padture, and T.C. Sum, Advanced Functional Materials, 27, 1604818 (2017). https://doi.org/10.1002/adfm.201604818
H. Wei, P. Qiu, Y.E. Li, Y. He, M. Peng, X. Zheng, and X. Liu, Ceramics International, 48(5), 5876 (2021). https://doi.org/10.1016/j.ceramint.2021.11.184
M. Chen, M.G. Ju, H.F. Garces, A.D. Carl, L.K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R.L. Grimm, D. Pacifici, X.C. Zeng, Y. Zhou, and N.P. Padture, Nature Communications, 10, 16 (2019). https://doi.org/10.1038/s41467-018-07951-y
M.G. Ju, M. Chen, Y. Zhou, J. Dai, L. Ma, N.P. Padture, and X.C. Zeng, Joule, 2, 1231 (2018). https://doi.org/10.1016/j.joule.2018.04.026
T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, and H.J. Snaith, Advanced Energy Materials, 5, 1500963 (2015). https://doi.org/10.1002/aenm.201500963
O.A. Muhammed, E. Danladi, P.H. Boduku, J. Tasiu, M.S. Ahmad, and N. Usman, East European Journal of Physics, 2, 146 (2021). https://doi.org/10.26565/2312-4334-2021-2-12
E. Danladi, M.Y. Onimisi, S. Garba, R.U. Ugbe, J.A. Owolabi, O.O. Ige, G.J. Ibeh, and A.O. Muhammed, Journal of the Nigerian Society of Physical Sciences, 1, 72 (2019). https://doi.org/10.46481/jnsps.2019.13
A. Tara, V. Bharti, S. Sharma, and R. Gupta, Optical Materials, 128, 112403 (2022). https://doi.org/10.1016/j.optmat.2022.112403
H. Pan, X. Zhao, X. Gong, H. Li, N.H. Ladi, X.L. Zhang, W. Huang, S. Ahmad, L. Ding, Y. Shen, M. Wang, and Y. Fu, Materials Horizons, 7, 2276 (2020). https://doi.org/10.1039/D0MH00586J
N.S.N. M. Alias, F. Arith, A.N. Mustafa, M.M. Ismail, N.F. Azmi, and M.S. Saidon, Journal of Engineering and Technological Sciences, 54(4), 220409 (2022). https://doi.org/10.5614/j.eng.technol.sci.2022.54.4.9
M.F.M. Noh, C.H. Teh, R. Daik, E.L. Lim, C.C. Yap, M.A. Ibrahim, N.A. Ludin, A.R.B.M. Yusoff, J. Jang, and M.A.M. Teridi, Journal of Materials Chemistry C, 6, 682 (2018). https://doi.org/10.1039/C7TC04649A
H. Sabbah, Materials, 15, 3229 (2022). https://doi.org/10.3390/ma15093229
N. Singh, A. Agarwal, and M. Agarwal, Superlattices and Microstructures, 149, 106750 (2021). https://doi.org/10.1016/j.spmi.2020.106750
S.M. Seyed-Talebi, and J. Beheshtian, International Journal of Energy and Power Engineering, 15(6), 252 (2021).
K. Chakraborty, M.G. Choudhury, and S. Paul, Solar Energy, 194, 886 (2019). https://doi.org/10.1016/j.solener.2019.11.005
F. Hao, C.C. Stoumpos, D.H. Cao, R.P. Chang, and M.G. Kanatzidis, Nature Photonics, 8(6), 489 (2014). https://doi.org/10.1038/nphoton.2014.82
W. Ning, F. Wang, B. Wu, J. Lu, Z. Yan, X. Liu, Y. Tao, J.M. Liu, W. Huang, M. Fahlman, and L. Hultman, Advanced Materials, 30(20), 1706246 (2018). http://dx.doi.org/10.1002/adma.201706246
S.Z. Haider, H. Anwar, and M. Wang, Semiconductor Science and Technology, 33(3), 035001 (2018). https://doi.org/10.1088/1361-6641/aaa596
C.M. Wolff, P. Caprioglio, M. Stolterfoht, and D. Neher, Advanced Materials, 31(52), 1902762 (2019). http://dx.doi.org/10.1002/adma.201902762
M.I. Hossain, F.H. Alharbi, and N. Tabet, Solar Energy, 120, 370 (2015). https://doi.org/10.1016/j.solener.2015.07.040
C.S. Solanki, Solar Photovoltaics: Fundamentals, Technologies and Applications, (PHI Learning Pvt. Ltd., New Delhi, 2015).
F. Anwar, R. Mahbub, S.S. Satter, and S.M. Ullah, International Journal of Photoenergy, Article ID 9846310, (2017). https://doi.org/10.1155/2017/9846310
J.P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T.J. Jacobsson, M.E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, Advanced Materials, 28(5031), 7 (2016). https://doi.org/10.1002/adma.201600624
A. Mahmood, T. Munir, M. Fakhar-e-Alam, M. Atif, K. Shazad, K.S. Alimgeer, T.G. Nguyen H. Ahmad, and S. Ahmad, Journal of King Saud University-Science, 34(2), 101796, (2022). https://doi.org/10.1016/j.jksus.2021.101796
E. Danladi, M. Kashif, T.O. Daniel, C.U. Achem, M. Alpha, and M. Gyan, East European Journal of Physics, 3, 19 (2022). https://doi.org/10.26565/2312-4334-2022-3-03
Авторське право (c) 2022 Мухаммед О. Абдулмалік, Елі Данладі, Ріта С. Обасі, Філібус М. Гюк, Френсіс У. Саліфу, Сулейман Магаджі, Анселем С. Егбуга, Даніель Томас
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).