Influence of Electrophysical Parameters of Magnetodielectric Layer on a PCP on Its Electrodynamic Characteristics

Keywords: Magnetodielectric layer, Impedance concept, Surface impedance, Inhomogeneous permeability, Inhomogeneous permittivity, Reflection coefficient

Abstract

Within the framework of the impedance concept, approximate analytical formulas for the distributed surface impedance of the magnetodielectric layer with the inhomogeneous permeability and permittivity located on a perfectly conducting plane (PCP) for the cases of a quadratic law of changes in electrical parameters along the layer thickness are obtained. A comparative analysis of electromagnetic waves reflection coefficient from this structure for various laws of change of the permeability and permittivity is presented.

Downloads

Download data is not yet available.

References

K. Iizuka, “An experimental study of the insulated dipole antenna immersed in a conducting medium,” IEEE Trans. Antennas Propag., 11, 518-532 (1963). https://doi.org/10.1109/TAP.1963.1138080

W. G. Swaiciuer, and L. Peters, “Radar cross sections of dielectric or plasma coated conducting spheres and circular cylinders,” IEEE Trans. Antennas Propag., 11, 558-569 (1963). https://doi.org/10.1109/TAP.1963.1138087

D. Lamensdorf, “An experimental investigation of dielectric-coated antennas,” IEEE Trans. Antennas Propag., 15, 767-771 (1967). https://doi.org/10.1109/TAP.1967.1139049

R.W.P. King, S.R. Mishra, K.M.Lee, and G.S. Smith, “The insulated monopole: admittance and junction effects,” IEEE Trans. Antennas Propag., 23, 172-177 (1975). https://doi.org/10.1109/TAP.1975.1141044

B.P. Sinha, and S.A. Saoudy, “Rigorous analysis of finite length insulated antenna in air,” IEEE Trans. Antennas Propag., 38, 1253-1258 (1990). https://doi.org/10.1109/8.56963

S.A. Saoudy, and Sinha, “Wiener-Hopf type analysis of dielectric-coated dipole antenna in relatively dense medium,” IEEE Trans. Antennas Propag., 39, 1057-1061 (1991). https://doi.org/10.1109/8.97338

A.R. Bretones, A. Salinas, R.G. Martín, and I S. García, “Time-domain analysis of dielectric-coated wire antennas and scatterers,” IEEE Trans. Antennas Propag., 42, 815-819 (1994). https://doi.org/10.1109/8.301700

T.W. Hertel, and G.S. Smith, “The insulated linear antenna-revisited,” IEEE Trans. Antennas Propag., 48, 914-920 (2000). https://doi.org/10.1109/8.865224

X. Li, K.E K. Drissi, and F. Paladian, “Insulated vertical antennas above ground,” IEEE Trans. Antennas Propag., 52, 321-324 (2004). https://doi.org/10.1109/TAP.2003.822445

M. V. Nesterenko, “Analytical methods in the theory of thin impedance vibrators,” Prog. Electromagn. Res. B, 21, 299-328 (2010). http://dx.doi.org/10.2528/PIERB10020105

M. V. Nesterenko, V. A. Katrich, S. L. Berdnik, Yu. M. Penkin, and V. M. Dakhov, “Application of the generalized method of induced EMF for investigation of characteristics of thin impedance vibrators,” Prog. Electromagn. Res. B, 26, 149-178 (2010). http://dx.doi.org/10.2528/PIERB10052902

M. V. Nesterenko, V. A. Katrich, Y. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications. (Springer Science+Business Media, NY, 2011).

A.R. Bretones, R. G. Martín, and I. S. García, “Time-domain analysis of magnetic-coated wire antennas,” IEEE Trans. Antennas Propag., 43, 591-596 (1995). https://doi.org/10.1109/8.387174

M. Nesterenko, V. Katrich, S. Berdnik, O. Dumin, and Y. Antonenko “Asymmetric impedance vibrator for multi-band communication systems,” Prog. Electromagn. Res. M, 102, 81-89 (2021). http://dx.doi.org/10.2528/PIERM21031207

H.О. Schaik, “The performance of an iris-loaded planar phased-array antenna of rectangular waveguides with an external dielectric sheet,” IEEE Trans. Antennas Propag., 26, 413-419 (1978). https://doi.org/10.1109/TAP.1978.1141860

R. Luebbers, and B. Munk, “Some effects of dielectric loading on periodic slot arrays,” IEEE Trans. Antennas Propag., 26, 536-542 (1978). https://doi.org/10.1109/TAP.1978.1141887

A.J. Sangster, “Conversion factors for the power radiated by a small slot in loaded rectangular waveguide,” Microwaves, Optics Acoustics, 3, 104-108 (1979). https://doi.org/10.1049/ij-moa.1979.0024

J.Y. Lee, T.Sh. Horng, and N G. Alexopoulos, “Analysis of cavity-backed aperture antennas with a dielectric overlay,” IEEE Trans. Antennas Propag., 42, 1556-1562 (1994). https://doi.org/10.1109/8.362779

F. L. Whetten, and C. A. Balanis, “Effects of a dielectric coating on leaky-wave long-slot waveguide antennas,” IEEE Trans. Antennas Propag., 44, 1166-1171 (1996). https://doi.org/10.1109/8.511826

R. A. Pucel, and D. J. Masse, “Microstrip propagation on magnetic substrates—Part I: Design theory,” IEEE Trans. Microw. Theory Techn., 20, 304–308 (1972). https://doi.org/10.1109/TMTT.1972.1127749

S. Berdnik, V. Katrich, M. Nesterenko, and Yu. Penkin, “E-plane T-junction of rectangular waveguides with vibrator-slot coupling between arms,” Telecommun. Radio Engineer., 74, 1225-1240 (2015). https://doi.org/10.1615/TelecomRadEng.v74.i14.10

L. Zheng, X. Yang, W. Gong, M. Qiao, and X. Li, “Ultralow thickness-bandwidth ratio magnetic absorber with printed FSS for S and C Bands,” IEEE Anten. Wireless Prop. Lett., 21, 576-580 (2022). https://doi.org/10.1109/LAWP.2021.3138634

N. Prasad, P. Pardhasaradhi, B. T. P. Madhav, V. L. Raju, and P. P. Priya, “A Triband hexagonal shaped polarization insensitive absorber by tuning graphene material in Terahertz frequency domain,” Prog. Electromagn. Res. M, 116, 145-154 (2023). http://dx.doi.org/10.2528/PIERM23031508

K. Yoshitomi, and H.R. Sharobim, “Radiation from a rectangular waveguide with a lossy flange,” IEEE Trans. Antennas Propag., 42, 1398-1403 (1994). https://doi.org/10.1109/8.320746

K. Yoshitomi, “Radiation from a slot in an impedance surface,” IEEE Trans. Antennas Propag., 49, 1370-1376 (2001). https://doi.org/10.1109/8.954925

M.V. Nesterenko, and Yu.M. Penkin, “Diffraction radiation from a slot in the impedance end of a semi-infinite rectangular waveguide,” Radiophysics Quantum Electronics, 47, 489–499 (2004). https://doi.org/10.1023/B:RAQE.0000047240.37895.ea

M. V. Nesterenko, V. A. Katrich, and Yu. M. Penkin, “Diffraction of H10-wave by stepped rectangular waveguide coupling with impedance slot iris,” Telecommun. Radio Eng., 63, 569-588 (2005). https://doi.org/10.1615/TelecomRadEng.v63.i7.10

S. L. Berdnik, V. A. Katrich, Yu. M. Penkin, M. V. Nesterenko, and S. V. Pshenichnaya, “Energy characteristics of a slot cut in an impedance end-wall of a rectangular waveguide and radiating into the space over a perfectly conducting sphere,” Prog. Electrom.. Res. M, 34, 89-97 (2014). https://doi.org/10.2528/PIERM13112006

Yu. M. Penkin, V. A. Katrich, M. V. Nesterenko, and N. K. Blinova, “Effect of surface impedance on radiation fields of spherical antennas,” Prog. Electromagn. Res. L, 71, 83-89 (2017). http://dx.doi.org/10.2528/PIERL17090102

Yu. M. Penkin, V. A. Katrich, M. V. Nesterenko, S. L. Berdnik, and V. M. Dakhov, Electromagnetic Fields Excited in Volumes with Spherical Boundaries, (Cham, Switzerland: Springer Nature Switzerland AG, 2019).

M. V. Nesterenko, V. A. Katrich, Yu. M. Penkin, S. L. Berdnik, and O. A. Dumin, Combined Vibrator-Slot Structures: Theory and Applications, (Cham, Swizerland: Springer Nature Swizerland AG, 2020).

A.N. Lagarkov, V.N. Semenenko, A A. Basharin, and N.P. Balabukha, “Abnormal radiation pattern of metamaterial waveguide,” PIERS Online, 4, 641-644 (2008).

S.L. Berdnik, V.A. Katrich, V.I. Kiyko, M.V. Nesterenko, and Yu.M. Penkin, “Power characteristics of a T-junction of rectangular waveguides with a multi-element monopole-slotted coupling structure,” Telecommun. Radio Eng., 75, 489-506 (2016). https://doi.org/10.1615/TelecomRadEng.v75.i6.20

S.L. Berdnik, M.V. Nesterenko, Yu.M. Penkin, and S.N. Shulga, “Testing of thin metamaterial coatings by a waveguide-slot method,” in Proc. II Intern. Conf. Inform. and Telecomm. Technol. and Radio Electronics, 287-290 (2017).

R.E. Stovall, and K.K. Mei, “Application of a unimoment technique to a biconical antenna with inhomogeneous dielectric loading,” IEEE Trans. Antennas Propag., 23, 335-342 (1975). https://doi.org/10.1109/TAP.1975.1141090

Z. Shen, and R. H. MacPhie, “Input admittance of a multilayer insulated monopole antenna,” IEEE Trans. Antennas Propag., 46, 1679-1686 (1998). https://doi.org/10.1109/8.736621

K. Takizawa, and O. Hashimoto, “Transparent wave absorber using resistive film at V-band frequency,” IEEE Trans. Microwave Theory Tech., 47, 1137–1141 (1999). https://doi.org/10.1109/22.775450

J. A. Brandao Faria, “A matrix approach for the internal impedance of multilayered cylindrical structures,” Prog. Electromagn. Res. B, 28, 351-367 (2011). http://dx.doi.org/10.2528/PIERB1102150

L. Chen, M. B. Özakin, S. Ahmed, and H. Bagci, “A memory-efficient implementation of perfectly matched layer with smoothly varying coefficients in discontinuous Galerkin time-domain method,” IEEE Trans. Antennas Propag., 69, 3605-3610 (2021). https://doi.org/10.1109/TAP.2020.3037651

Z. Wang, L. Tang, L. Zhou, Z. Jiang, Z. Liu, and Y. Lin, “Methodology to design variable-thickness streamlined radomes with graded dielectric multilayered wall,” IEEE Trans. Antennas Propag., 69, 8015-8020 (2021). https://doi.org/10.1109/TAP.2021.3083799

M. I. Hossain, N. Nguyen, and A. M. Abbosh, “Broadband magnetic absorber based on double-layer frequency-selective surface,” IEEE Trans. Antennas Propag., 70, 410-419 (2022). https://doi.org/10.1109/TAP.2021.3096199

S. V. Yuferev, and N. Ida, Surface Impedance Boundary Conditions. A Comprehensive Approach, (NY: CRC Press, 2009).

E. M. Hamham, A. Zugari, and A. Benali, “Calculating radar cross section of lossy targets using the surface impedance approach,” Prog. Electromagn. Res. M, 55, 13-24 (2017). http://dx.doi.org/10.2528/PIERM16101503

M. Niknejad, M. Maddah-Ali, A. Bakhtafrouz, and M. Maddahali, “Self-dual integral equation for scattering analysis from bodies of revolution with multiple impedance boundary conditions,” Prog. Electromagn. Res. C, 121, 207-220 (2022). http://dx.doi.org/10.2528/PIERC22051904

M. V. Nesterenko, S. L. Berdnik, A. V. Gomozov, D. V. Gretskih, and V. A. Katrich, “Approximate boundary conditions for electromagnetic fields in electromagnetics,” Radioelectronic and Computer Systems, 103, 141-160 (2022). http://nti.khai.edu/ojs/index.php/reks/article/view/reks.2022.3.11/1904

D. Li, J. Yang, X. Wang, T. Wang, and R. Gong, “Ultrabroadband Metamaterial Absorber Based on Effectively Coupled Multilayer HIS Loaded Structure With Dallenbach Layer,” IEEE Trans. Microwave Theory Tech., 70, 232-238 (2021). https://doi.org/10.1109/TMTT.2021.3129219

B. Tegowski, T. Jaschke, A. Sienganschin, and A. Jacob, “A Transmission Line Approach for Rough Conductor Surface Impedance Analysis,” IEEE Trans. Microwave Theory Tech., 71, 471-479 (2023). https://doi.org/10.1109/TMTT.2022.3206440

D. Bosman, M. Huynen, D. De Zutter, X. Sun, N. Pantano, G. Van der Plas, E. Beyne, and D. Vande Ginste, “Analysis and Application of a Surface Admittance Operator for Combined Magnetic and Dielectric Contrast in Emerging Interconnect Topologies,” IEEE Trans. Microwave Theory Tech., 71, 2794-2806 (2023). https://doi.org/10.1109/TMTT.2023.3244205

L. A. Weinstein, The Theory of Diffraction and the Factorization Method, (NY: Golem Press, 1969).

V. Tabatadze, K. Karacuha, E. Veliyev and E. Karacuha, “The diffraction by two half-planes and wedge with fractional boundary condition,” Prog. Electromagn. Res. M, 91, 1-10 (2020). http://dx.doi.org/10.2528/PIERM20020503

M. Nesterenko, V. Katrich, O. Dumin, and S. Berdnik, “Approximate solution of the field equations for magnetodielectric layer with inhomogeneous permeability on perfectly conducting plane,” in: Proc. XXVIIIth Intern. Seminar on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, pp. 150-154 (2023).

Published
2024-12-08
Cited
How to Cite
Nesterenko, M. V., Katrich, V. A., Dumin, O. M., & Blinova, N. K. (2024). Influence of Electrophysical Parameters of Magnetodielectric Layer on a PCP on Its Electrodynamic Characteristics. East European Journal of Physics, (4), 405-412. https://doi.org/10.26565/2312-4334-2024-4-47