Reducing Influence of Hardware of Communication Station on Characteristics of Asymmetric Biconical Dipole Using Magneto-Dielectric Substrate on Finite-Size Metal Screen
Abstract
Based on the approximate analytical solution previously obtained by the authors to the problem of excitation (radiation, scattering) of electromagnetic waves by an asymmetric biconical dipole with distributed surface impedance (constant and variable) in a free space, the recommendations are proposed for reducing the influence of the hardware of a communication station on the characteristics of the such dipole using a magneto-dielectric substrate on a finite-size metal screen. Comparison of numerical and experimental results for a dipole in free space confirms the adequacy of the proposed mathematical model to the real physical process. Numerical results are given for the input characteristics and radiation fields of the dipole with magneto-dielectric substrate in the case of its asymmetric feeding by a point source.
Downloads
References
Z. Zhang, Antenna design for mobile devices, (London, England: Wiley, 2017).
G. Zhou, and B. Yildirim, “A multi-band fixed cellular phone antenna,” in: Proc. IEEE AP-S Int. Symp. 1, 112 (1999). https://doi.org/10.1109/APS.1999.789095
N. Odachi, S. Sekine, H. Shoki, and Y. Suzuki, “A rod antenna with a meander element for hand-held phone,” in: Proc. IEEE AP-S Int. Symp. 3, 1682 (2000). https://doi.org/10.1109/APS.2000.874565
H.-C. Tung, C.-Y. Fang, and K.-L. Wong, “Dual-band inverted-L monopole antenna for GSM/DCS mobile phone,” in: Proc. IEEE AP-S Int. Symp. 3, 30-33 (2002). https://doi.org/10.1109/APS.2002.1018149
C. Song, Y. Huang, J. Zhou, P. Carter, S. Yuan, Q. Xu, and Z. Fei, “Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting,” IEEE Trans. Industrial Electronics, 64, 3950-3961 (2017). https://doi.org/10.1109/TIE.2016.2645505
K. Paramayudha, S. J. Chen, T. Kaufmann, W. Withayachumnankul, and C. Fumeaux, “Triple-band reconfigurable low-profile monopolar antenna with independent tenability,” IEEE Open J. Antennas Propag. 1, 47-56 (2020). https://doi.org/10.1109/OJAP.2020.2977662
W. Hu, T. Feng, S. Gao, L. Wen, Q. Luo, P. Fei, Y. Liu, and X. Yang, “Wideband circularly polarized antenna using single-arm coupled asymmetric dipoles,” IEEE Trans. Antennas Propag. 68, 5104-5113 (2020). https://doi.org/10.1109/TAP.2020.2975275
Y. Luo, and Y. Liu, “Nona-band antenna with small nonground portion for full-view display mobile phones,” IEEE Trans. Antennas Propag. 68, 7624-7629 (2020). https://doi.org/10.1109/TAP.2020.2989874
S. Wang, and Z. Du, “A dual-antenna system for LTE/WWAN/WLAN/WiMAX smartphone applications,” IEEE Antennas Wireless Propag. Lett. 14, 1443-1446 (2015). https://doi.org/10.1109/LAWP.2015.2411253
R. Tang, and Z. Du, “Wideband monopole without lumped elements for octa-band narrow-frame LTE smartphone,” IEEE Antennas Wireless Propag. Lett. 16, 720-723 (2017). https://doi.org/10.1109/LAWP.2016.2600761
Y. Yang, Z. Zhao, W. Yang, Z. Nie, and Q.-H. Liu, “Compact multimode monopole antenna for metal-rimmed mobile phones,” IEEE Trans. Antennas Propag. 65, 2297-2304 (2017). https://doi.org/10.1109/TAP.2017.2679059
Y. Liu, P. Liu, Z. Meng, L. Wang, and Y. Li, “A planar printed nona-band loop-monopole reconfigurable antenna for mobile handsets,” IEEE Antennas Wireless Propag. Lett. 17, 1575-1579 (2018). https://doi.org/10.1109/LAWP.2018.2856459
D. Huang, Z. Du, and Y. Wang, “A quad-antenna system for 4G/5G/GPS metal frame mobile phones,” IEEE Antennas Wireless Propag. Lett. 18, 1586-1590 (2019). https://doi.org/10.1109/LAWP.2019.2924322
Q. Tan, and F-C. Chen, “Triband circularly polarized antenna using a single patch,” IEEE Antennas Wireless Propag. Lett. 19, 2013-2017 (2020). https://doi.org/10.1109/LAWP.2020.3014961
R.M. Moreno, J. Kurvinen, J. Ala-Laurinaho, A. Khripkov, J. Ilvonen, J. van Wonterghem, and V. Viikari, “Dual-polarized mm-wave endfire chain-slot antenna for mobile devices,” IEEE Trans. Antennas Propag. 69, 25-34 (2021). https://doi.org/10.1109/TAP.2020.3001434
L. Chang, G. Zhang, and H. Wang, “Triple-band microstrip patch antenna and its four-antenna module based on half-mode patch for 5Gx4 MIMO operation,” IEEE Trans. Antennas Propag. 70, 67-74 (2022). https://doi.org/10.1109/TAP.2021.3090572
C. Sahana, D. Nirmala, and M. Jayakumar, “Dual-band circularly polarized annular ring patch antenna for GPS-aided GEO-augmented navigation receivers,” IEEE Antennas Wireless Propag. Lett. 21, 1737-1741 (2022). https://doi.org/10.1109/LAWP.2022.3178980
Z. Wan, Y. He, Y. Bai, and H. Sun, “Miniaturized, low-profile, triple-band microstrip antenna and its four-antenna module for smartphone applications,” IEEE Trans. Antennas Propag., 71, 9950-9955 (2023). https://doi.org/10.1109/TAP.2023.3315471
R. Lakshmanan, S. Mridula, A. Pradeep, and K. Neema, “Ultra compact flexible monopole antennas for tri-band applications,” Prog. Electromagn. Res. C, 130, 43-55 (2023). http://dx.doi.org/10.2528/PIERC22110906
A. Khade, M. Trimukhe, S. Verblkar, and R. K. Gupta, “Miniaturization of printed rectangular monopole antenna by using slots for triple band applications,” Prog. Electromagn. Res. C, 130, 155-167 (2023). http://dx.doi.org/10.2528/PIERC22122401
R. Xu, and Z. Shen, “Dual-band circularly polarized RFID reader antenna with combined dipole and monopoles,” IEEE Trans. Antennas Propag., 71, 9593-9600, (2023). https://doi.org/10.1109/TAP.2023.3326945
R. W. P. King, and T. T. Wu, “The cylindrical antenna with arbitrary driving point,” IEEE Trans. Antennas Propag. 13, 710-718 (1965). https://doi.org/10.1109/TAP.1965.1138531
B. D. Popovic, “On polynomial approximation of current along thin asymmetrical cylindrical dipoles,” IEEE Trans. Antennas Propag. 19, 117-120 (1971). https://doi.org/10.1109/TAP.1971.1139879
Y. Wang, S. Xu, and D. H. Werner, “1 bit dual-polarized reconfigurable transmitarray antenna using asymmetric dipole elements with parasitic bypass dipoles,” IEEE Trans. Antennas Propag. 69, 1188-1192 (2021). https://doi.org/10.1109/TAP.2020.3005713
M. V. Nesterenko, V. A. Katrich, Y M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, (Springer Science+Business Media, New York, 2011).
M. V. Nesterenko, V. A. Katrich, S. L. Berdnik, O. M. Dumin, and Y. O. Antonenko, “Asymmetric impedance vibrator for multi-band communication systems,” Prog. Electromagn. Res. M, 102, 81-89 (2021). http://dx.doi.org/10.2528/PIERM21031207
M. V. Nesterenko, V. A. Katrich, and S. V. Pshenichnaya, “Multyband asymmetric biconical dipole antenna with distributed surface impedance and arbitrary excitation,” East European J. Physics, 2, 450-455 (2024). https://doi.org/10.26565/2312-4334-2024-2-59
M. V. Nesterenko, V. A. Katrich, Yu. V. Arkusha, and V. V. Katrich, “Radiation of electromagnetic waves by regular and biconical dipoles with variable distributed surface impedance and arbitrary excitation,” East European J. Physics, 3, 465-474 (2024). https://doi.org/10.26565/2312-4334-2024-3-56
X. Liu, K. Ning, S. Xue, L. Ge, K. W. Leung, and J.-F. Mao, “Printed filtering dipole antenna with compact size and high selectivity,” IEEE Trans. Antennas Propag., 72, 2355-2367, (2024). https://doi.org/10.1109/TAP.2024.3356176
S. A. Schelkunoff, “Theory of antennas of arbitrary size and shape,” Proc. IRE, 29, 493-521 (1941). https://doi.org/10.1109/JRPROC.1941.231669
C.T. Tai, “On the theory of biconical antennas,” Journal Applied Phys., 19, 1155-1160 (1948). https://doi.org/10.1063/1.1715036
T.T. Wu, and R.W.P. King, “The tapered antenna and its application to the junction problem for thin wires,” IEEE Trans. Antennas Propag. 24, 42-45 (1976). https://doi.org/10.1109/TAP.1976.1141274
S.A. Saoudy, and M. Hamid, “Input admittance of a biconical antenna with wide feed gap,” IEEE Trans. Antennas Propag. 38, 1784-1790 (1990). https://doi.org/10.1109/8.102740
S. S. Sandler, and R. W. P. King, “Compact conical antennas for wide-band coverage,” IEEE Trans. Antennas Propag. 42, 436-439 (1994). https://doi.org/10.1109/8.280735
K.-L. Wong, and S.-L. Chien, “Wide-band cylindrical monopole antenna for mobile phone,” IEEE Trans. Antennas Propag. 53, 2756-2758 (2005). https://doi.org/10.1109/TAP.2005.851784
O. Dumin, P. Fomin, V. Plakhtii, and M. Nesterenko, “Ultrawideband combined monopole-slot radiator of Clavin type,” in Proc. XXVth Int. Sem. Direct Inverse Problems of Electromagn. and Acoustic Wave Theory, 32-36, (2020). https://doi.org/10.1109/DIPED49797.2020.9273399
P. Fomin, O. Dumin, V. Plakhtii, and M. Nesterenko, “UWB antenna arrays with the monopole-slot radiator of Clavin type,” in Proc. IIIth Ukraine Conf. on Electrical and Computer Engineering, 258-261, (2021). https://doi.org/10.1109/UKRCON53503.2021.9575282
M. V. Nesterenko, A. V. Gomozov, V. A. Katrich, S. L. Berdnik, and V. I. Kijko, “Scattering of electromagnetic waves by impedance biconical vibrators in a free space and in a rectangular waveguide,” Prog. Electromagn. Res. C, 119, 275-285 (2022). http://dx.doi.org/10.2528/PIERC22020304
F. F. Dubrovka, S. Piltyay, M. Movchan, and I. Zakharchuk, “Ultrawideband compact lightweight biconical antenna with capability of various polarizations reception for modern UAV applications,” IEEE Trans. Antennas Propag., 71, 2922-2929 (2023). https://doi.org/10.1109/TAP.2023.3247145
J.M. Platt, L.B. Boskovic, and D.S. Filipovic, “Wideband biconical antenna with embedded band-notch resonator,” IEEE Trans. Antennas Propag., 72, 2921-2925 (2024). https://doi.org/10.1109/TAP.2024.3349785
I. D. Chiele, M. Donelli, J. Iannacci, and K. Guha, “On chip modulated scattering tag operating at millimetric frequency band,” Prog. Electromagn. Res. M, 124, 71-77 (2024). http://dx.doi.org/10.2528/PIERM23102707
M. V. Nesterenko, S. L. Berdnik, A. V. Gomozov, D. V. Gretskih, and V. A. Katrich, “Approximate boundary conditions for electromagnetic fields in electromagnetics. Radioelectronic and Computer Systems,” No 3(103), 141-160, (2022). https://doi.org/10.32620/reks.2022.3.11
K. Yoshitomi, “Radiation from a slot in an impedance surface,” IEEE Trans. Antennas Propag. 49, 1370-1376 (2001). https://doi.org/10.1109/8.954925
Copyright (c) 2025 Mikhail V. Nesterenko, Victor A. Katrich, Svetlana V. Pshenichnaya, Sergey А. Pogarsky

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



