Impact of Temperature, Irradiation Duration on Performance of Organic/Ru-Dye/Inorganic Solar Cells

Keywords: Solar cells, Temperature, Defects, Illumination, Oxide Surface, Efficiency

Abstract

This study investigates the impact of ambient conditions on the performance of P3HT/Ru-dye/nc-TiO2 solar cells (TLSCs). It has been found that the increase of temperature and irradiation duration affect on the parameters of TLSCs. When the temperature was increased from 293 k to 393 k , the short circuit current density (Jsc ) and open circuit voltgae (Voc) decrease from 2.2 to 1.7 mA/cm2 and 0.7 V to 0.5 V respectively. That is attributed to the effect of high temperature on recombination of photo-generated charges and reduction of shunt resistance (Rsh ) in the TLSC. Moreover, we also present the effect of irradiation duration on performance of the TLSCs. The measurement reveals that Jsc decreased by 0.5 mA/cm2 while Voc decreased by ~ 0.18 V during 4800 s illumination. This decrease suggests the filling of traps or defects at the interface with photo-genertated charges. Finally, the maximum output power of TLSCs dropped by almost half within 6 days during a 20-day test because of affecting atmosphere moisture on the interface properties between dye/ nc-TiO2 and P3HT.

Downloads

Download data is not yet available.

Author Biography

Hmoud Al-Dmour, Mutah University, Faculty of Science, Department of Physics, Jordan

Professor in Physics

References

R. Gahlot, S. Mir, and N. Dhawan, Energy Fuels. 36, 14554 (2022). https://doi.org/10.1021/acs.energyfuels.2c02847

H. Al-Dmour, S. Al-Trawneh, and S. Al-Taweel, Int. J. Adv. Appl. Sci. 8(6), 1 (2021). https://doi.org/10.21833/ijaas.2021.06.015

K. Sharma, V. Sharma, and S.S. Sharma, Nanoscale research letters, 13, 381 (2018‏). https://doi.org/10.1186/s11671-018-2760-6

S. Taweel, S.A. ltrawneh, H. Al Dmour, O. Al Gzawat, W. Alhalasah, and M. Mousa, Heliyon, 9, 1 (2023). https://doi.org/10.1002/anie.202302753

K. Altola, G. Gave, M. Markkanen, J. Jaqueline, and P. Lunda, Solar Energy, 237, 264 (2022). https://doi.org/10.1016/j.solener.2022.03.060

H. Al Dmour, and M. Taylor, J. Ovonic. Res. 19, 587 (2023). https://doi.org/10.15251/JOR.2023.195.587

N. Mohenzadehan, A. Nouri, and M. Mohammadi, 25, 3210 (2023). https://doi.org/10.1039/D3CE00126A

A. Sławek, Z. Starowicz, and M. Lipiński, Materials, 14(12), 3295 (2021). https://doi.org/10.3390/ma14123295

E. Chahid, M. Lotfi, and O. Lotfi, IJPEDS, 2, 1772 (2021). http://doi.org/10.11591/ijpeds.v12.i3.pp1772-1783

H. Al Dmour, East Eur. J. Phys, (3), 555 (2023). https://doi.org/10.26565/2312-4334-2023-3-65

A. Pirashanthan, T. Kajana, D. Velauthapillai, Y. Shivatharsiny, S. Bentouba, and P. Ravirajan, Nanomaterials, 12, 820 (2022). https://doi.org/10.3390/nano12050820

L. Shaker, A. Al-Amiery, M. Hanoon, W. Al-azzawi, and A. Kadhum, Sustainable Energy Research, 11, 6 (2024). https://doi.org/10.1186/s40807-024-00100-8

L. Huang, and B. Zahang, Nat. Commun. 14, 124 (2024). https://doi.org/10.1038/s41467-023-36937-8

J. Nelson, The physics of solar cell, (Imperial College Press, 2003).

H Al-Dmour, Eur. J. Phys, (2), 445-449 (2024). https://doi.org/10.26565/2312-4334-2024-2-58

J.C. Nolasco, A. Castro-Carranza, Y.A. León, C. Briones-Jurado, J. Gutowski, J. Parisi, and E. von Hauff, Solar Energy, 184, 610 (2019). https://doi.org/10.1016/j.solener.2019.04.031

H. Al Dmour, R. Alzard, H. Alblooshi, K. Alhosani, S. Al-Madhoob, and N. Saleh, Front. Chem. 7, 561 (2019). https://doi.org/10.3389/fchem.2019.00561

Published
2024-09-02
Cited
How to Cite
Al-Dmour, H. (2024). Impact of Temperature, Irradiation Duration on Performance of Organic/Ru-Dye/Inorganic Solar Cells. East European Journal of Physics, (3), 435-439. https://doi.org/10.26565/2312-4334-2024-3-52