SCAPS Numerical Analysis of Graphene Oxide/Zirconium Disulfide Solar Cells

Keywords: SCAPS-1D simulation, Solar cells, Work function, Interfacial layers, Operating temperature


This work studies the performance of solar cells composed of two different materials, graphene oxide (Go, hole transport material) and zirconium disulfide (ZrS2, electron transport materials) using the SCPAS -1D simulation. It has been found that Go/ZrS2 solar cells show better performance with high short circuit current, Jsc, of 38 mA/cm2 and the power conversion efficiency, η, of 17% compared with other solar cells based on graphene oxide and perovskite materials. Additionally, the short circuit current density decreases from 38 mA/cm2 to 22 mA/cm2 when the energy gap of ZrS2 increases from 1.2 eV to 17 eV. The increasing the operating temperature and the work function of back contact also led to decrease the open circuit voltage and power conversion efficiency of the cells, while the short circuit current density was slightly enhanced. That is attributed to changes in the electrical properties of Go and ZrS2 layers, including their charge carrier mobility and characteristics of the interfacial layers.


Download data is not yet available.

Author Biography

Hmoud Al-Dmour, Mutah University, Faculty of Science, Department of Physics, Jordan

Professor in Physics.


P. Omar, A. Khellaf, and K. Mohammedi, Renew Sust. Energy Rev. 23, 12 (2013).

X. He, S. Khan, I. Oztyrk, and M. Murshed, Sustain. Dev. 31, 1888 (2023).

A. Reinders, and P. Verlinden, Photovoltaic Solar Energy: From Fundamentals to Applications, (Wiley Publishing, USA, 1988).

A. Polman, M. Knight, E. Garnett, B. Ehrler, and W. Sinke, J. Sci. 352, 6283 (2020).

P. Liu, C. Xiao, C. Xie, and W. Li, Nano Energy, 89, 106399 (2021).

H. Al-Dmour, D.M. Taylor, and J.A. Cambridge, J. Phys. D, Appl. Phys. 40, 5034 (2007).

P. Sumesh, Sol. Energy Mater Sol. Cells, 192, 16 (2019).

M. Abdelfatah, A. El-Sayed, W. Isamil, V. Sittinger, and A. El-Shaer, Sci. Rep. 13, 4553 (2023).

Y. Park, K.S. Choi, and S.Y. Kim, Phys. Status Solidi, 209, 1363 (2012).

M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films, 361-362, 527 (2000).

H. Zerfaoui, D. Dib, M. Rahmani, K. Benyelloul, and C. Mebarkia, AIP Conference Proceedings, 1758, 030029 (2016).

H. Al Dmour, East Eur. J. Phys, (3), 555-561 (2023).

F.X. Abomo Abega, A.T. Ngoupo, and J.M. Ndjaka, Int. J. Photoenergy, 21, 7506837 (2021).

N. Touafek, R. Mahamdi, and C. Dridi, Dig. J. Nanomater. Bios. 16, 705 (2021).

N.S. Noorasid, F. Arith, A.Y. Firhat, A.N. Mustafa, and A.S.M. Shah, Eng. J. 26, 1-12 (2022).

D.W. Husainat, P. Ali, J. Cofie, J. Attia, A. Fuller, Darwish, AJOP, 8(1), 6 (2020).

J.W. Lee, “Isothermal Electricity for Energy Renewal. PCT,” International Patent Application Publication Number WO 2019/136037 A1, (11 July 2019).

H. Al Dmour, R. Alzard, H. Alblooshi, K. Alhosanim, S. Al-Madoob, and N. Saleh, Front. Chem. 7, 1 (2019).

K. Gong, J. Hu, N. Cui, Y. Xue, L. Li, G. Long, and S. Lin, Mater. Des. 211, 110170 (2021).

H. Al-Dmour, S. Al-Trawneh, S. Al-Taweel, Int. J. Adv. Appl. Sci. 8, 128 (2021).

J. Xi, L. Zheng, S. Wang, J. Yang, and W. Zhang, J. Comput. Chem. 42, 2213 (2021).

P. Sawicka-Chudy, Z. Starowicz, G. Wisz, R. Yavorskyi, Z. Zapukhlyak, M. Bester, and Ł. Głowa, Mater. Res. Express, 6, 085918 (2019).

How to Cite
Al-Dmour, H. (2024). SCAPS Numerical Analysis of Graphene Oxide/Zirconium Disulfide Solar Cells. East European Journal of Physics, (2), 445-449.