Anisotropic Cosmological Model in f (R,T) Theory of Gravity with a Quadratic Function of T

Keywords: Bianchi type-I universe, f(R, T) theory of gravity, Hubble parameter, Cosmological constant, Deceleration parameter

Abstract

In this paper, we study spatially homogeneous and anisotropic Bianchi type-I space-time filled with perfect fluid within the framework of f(R,T)  theory of gravity for the functional form f(R,T)=R+2f(T)  with f(T)=αT+βT2, where α and β are constants. Exact solutions of the gravitational field equations are obtained by assuming the average scale factor to obey a hybrid expansion law and some cosmological parameters of the model are derived. Two special cases, leading to the power-law expansion and the exponential expansion, are also considered. We investigate the physical and geometrical properties of the models by studying the evolution graphs of some relevant cosmological parameters such as the Hubble parameter (H), the deceleration parameter ( q) etc.

Downloads

Download data is not yet available.

References

A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009-1038 (1998). https://doi.org/10.1086/300499

S. Perlmutter, G. Aldering, M.D. Valle, S. Deustua, R.S. Ellis, S. Fabbro, A. Fruchter, et al., “Discovery of a supernova explosion at half the age of the Universe,” Nature, 391, 51-54 (1998). https://doi.org/10.1038/34124

S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, et al., “Measurements of Σ and Λ from 42 High-Redshift Supernovae,” Astrophys. J, 517, 565-589 (1999). https://doi.org/10.1086/307221

C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, et al., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results,” Astrophys. J. Suppl. Ser. 148, 1-27 (2003). https://doi.org/10.1086/377253

D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, M. Halpern, et al., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters,” Astrophys. J. Suppl. Ser. 148, 175-194 (2003). https://doi.org/10.1086/377226

D.N. Spergel, R. Bean, O. Doré, M.R. Nolta, C.L. Bennett, J. Dunkley, G. Hinshaw, et al., “Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology,” Astrophys. J. Suppl. Ser. 170, 377-408 (2007). https://doi.org/10.1086/513700

M. Tegmark, D.J. Eisenstein, M.A. Strauss, D.H. Weinberg, M.R. Blanton, J.A. Frieman, M. Fukugita, et al., “Cosmological constraints from the SDSS luminous red galaxies,” Phys. Rev. D, 74, 123507 (2006). https://doi.org/10.1103/PhysRevD.74.123507

D.J. Eisenstein, I. Zehavi, D.W. Hogg, R. Scoccimarro, M.R. Blanton, R.C. Nichol, R. Scranton, et al., “Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies,” Astrophys. J. 633, 560 (2005). https://doi.org/10.1086/466512

G. Hinshaw, D. Larson, E. Komatsu, D.N. Spergel, C.L. Bennett, J. Dunkley, M.R. Nolta, et al., “Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results,” Astrophys. J. Suppl. Ser. 208, 19 (2013). https://doi.org/10.1088/0067-0049/208/2/19

E. Komatsu, K.M. Smith, J. Dunkley, C.L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, et al., “Seven-year Wilkinson microwave anisotropy probe (WMAP) observations,” Astrophys J. Suppl. Ser. 192, 18 (2011). https://doi.org/10.1088/0067-0049/192/2/18

T. Harko, F. Lobo, S. Nojiri, and S.D. Odintsov, “f(R,T) gravity,” Phys. Rev. D, 84, 024020 (2011). https://doi.org/10.1103/PhysRevD.84.024020

M.J.S. Houndjo, “Reconstruction of f(R,T) gravity describing matter dominated and accelerated phases,” Int. J. Mod. Phys. D, 21, 1250003-1250016 (2012). https://doi.org/10.1142/S0218271812500034

K.S. Adhav, “LRS Bianchi Type I Cosmological Model in f(R,T) theory of gravity,” Astrophys Space Sci. 339, 365-369 (2012). https://doi.org/10.1007/s10509-011-0963-8

D.R.K. Reddy, et al., “Bianchi type-III dark energy model in f(R,T) gravity,” Int. J. Theor. Phys. 52, 239-245 (2013). https://doi.org/10.1007/s10773-012-1325-1

S. Chandel, and S. Ram, “Anisotropic Bianchi type III perfect fluid cosmological models in f(R,T) theory of gravity,” Indian J. Phys. 87, 1283-1287 (2013). https://doi.org/10.1007/s12648-013-0362-9

R. Chaubey, and A.K. Shukla, “A new class of Bianchi cosmological model in f(R,T) gravity,” Astrophys. Space Sci., 343, 415 422 (2013). https://doi.org/10.1007/s10509-012-1204-5

P.K. Sahoo, and B. Mishra, “Kaluza-Klein dark energy model in the form of wet dark fluid in f(R,T) gravity,” Can. J. Phys. 92, 1062 (2014). https://doi.org/10.1139/cjp-2014-0235

L.S. Ladke, and R.A. Hiwarkar, and V.K. Jaiswal, “Cosmological Model with Decaying Λ in f(R,T) Theory of Gravity,” Int. J. Sci. & Res. 4, 2245-2249 (2015). https://www.ijsr.net/archive/v4i12/NOV152533.pdf

P.K. Sahoo, B. Mishra, and G.C. Reddy, “Axially symmetric cosmological model in f(R,T) gravity,” Eur. Phys. J. Plus, 129, 49 (2014). https://doi.org/10.1140/epjp/i2014-14049-7

P.K. Agrawal, and D.D. Pawar, “Plane symmetric cosmological model with quark and strange quark matter in f(R,T) theory of gravity,” J. Astrophys. Astr. 38, 2 (2017). https://doi.org/10.1007/s12036-016-9420-y

S. Bhoyar, V. Chirde, and S. Shekh, “Non-static plane symmetric cosmological model with magnetized anisotropic dark energy by hybrid expansion law in f(R,T) gravity,” Int. J. of Adv. Research, 3, 492-500 (2015). https://www.journalijar.com/uploads/478_IJAR-7015.pdf

A.K. Yadav, P.K. Srivastava, and L. Yadav, “Hybrid Expansion Law for Dark Energy Dominated Universe in f(R,T) Gravity,” Int. J. Theor. Phys. 54, 1671-1679 (2015). https://doi.org/10.1007/s10773-014-2368-2

A.K. Yadav, A.T. Ali, “Invariant Bianchi type I models in f(R,T) gravity,” Int. J. Geom. Methods in Mod. Phys. 15, 1850026 (2018). https://doi.org/10.1142/S0219887818500263

V. Singh, and A. Beesham, “Plane Symmetric Model in f(R,T) gravity,” Gen Rel Quantum cosmology, 135, 319-329 (2020). https://doi.org/10.1140/epjp/s13360-020-00314-x

R. Chaubey, A.K. Shukla, and T. Singh, “The general class of Bianchi cosmological models in f(R,T) gravity with dark energy in viscous cosmology,” Ind. J. Phys. 90, 233-242 (2016). https://doi.org/10.1007/s12648-015-0749-x

S. Bhattacharjee, P.K. Sahoo, and S. Arora, “Late-time viscous cosmology in f(R,T) gravity,” New Astronomy, 82, 101452 (2021). https://doi.org/10.1016/j.newast.2020.101452

R.K. Tiwari, A. Beesham, and B.K. Shukla, “Time varying deceleration parameter in f(R,T) gravity: a general case,” Afrika Matematika, 32, 983 994 (2021). https://doi.org/10.1007/s13370-021-00874-w

G.P. Singh, and B.K. Bishi, “Bianchi Type I Universe with Cosmological Constant and Quadratic Equation of State in f(R,T) Modified Gravity,” Adv. High Energy Phys. 2015, 816826 (2015). https://doi.org/10.1155/2015/816826

P.H.R.S. Moraes, R.A.C. Correa, and R.V. Lobato, “Analytical general solutions for static wormholes in f(R,T) gravity,” J. Cosmol. Astropart. Phys. 07, 029 (2017). https://doi.org/10.1088/1475-7516/2017/07/029

P.H.R.S. Moraes, and P.K. Sahoo, “Modelling Wormholes in f(R,T) gravity,” Phys. Rev. D. 96, 044038-044045 (2017). https://doi.org/10.1103/PhysRevD.96.044038

H. Azmat, M. Zubair, I. Noureen, “Dynamics of shearing viscous fluids in f(R,T) gravity,” Int. J. Mod. Phys. D, 27, 1750181 (2018). https://doi.org/10.1142/S0218271817501814

P.V. Tretyakov, “Cosmology in modified f(R,T) gravity,” Eur. Phys. J. C, 78, 896 (2018). https://doi.org/10.1140/epjc/s10052-018-6367-y

P.K. Sahoo, S. Mandal, and S. Arora, “Energy conditions in non-minimally coupled f(R,T) gravity,” Astronomische Nachrichten, 342, 89-95 (2021). https://doi.org/10.1002/asna.202113886

P.K. Sahoo, P. Bhar, and P. Rej, “Phantom energy supported wormhole model in f(R,T) gravity assuming conformal motion,” Int. J. Mod. Phys. D, 31, 2250016 (2022). https://doi.org/10.1142/S021827182250016X

P.K. Sahoo, and S. Bhattacharjee, “Gravitational Baryogenesis in non-minimal coupled f(R,T) gravity,” Int. J. Theor. Phys. 59, 1451-1459 (2020). https://doi.org/10.1007/s10773-020-04414-3

S. Bhattacharjee, P.K. Sahoo, J.R.L. Santos, and P.H.R.S., Moraes, “Inflation in f(R,T) gravity,” Eur. Phys. J. Plus, 135, 576 (2020). https://doi.org/10.1140/epjp/s13360-020-00583-6

P. Sahoo, S. Bhattacharjee, S.K. Tripathy, and P.K. Sahoo, “Bouncing scenario in f(R,T) gravity,” Mod. Phys. Lett. A, 35, 2050095 (2020). https://doi.org/10.1142/S0217732320500959

S. Jokweni, V. Singh, and A. Beesham, “LRS Bianchi I Model with Bulk Viscosity in f(R,T) gravity,” Grav. Cosmo. 27, 169-177 (2021). https://doi.org/10.1134/S0202289321020079

V. Singh, and A. Beesham, “Plane symmetric model in f(R,T) gravity,” Eur. Phys. J. Plus, 135, 1-15 (2020). https://doi.org/10.1140/epjp/s13360-020-00314-x

Ö. Akarsu, S. Kumar, R. Myrzakulov, M. Sami, and Xu. Lixin, “Cosmology with hybrid expansion law: Scalar field reconstruction of cosmic history and observational constraints,” Journal of Cosmology and Astroparticle Physics, 01, 022 (2014). https://doi.org/10.1088/1475-7516/2014/01/022

Published
2023-09-04
Cited
How to Cite
Mahanta, C. R., Deka, S., & Pathak, K. (2023). Anisotropic Cosmological Model in f (R,T) Theory of Gravity with a Quadratic Function of T. East European Journal of Physics, (3), 43-52. https://doi.org/10.26565/2312-4334-2023-3-02