Polyphenol Interactions with Amyloid Fibrils: A Molecular Docking Study

  • Uliana Malovytsia aКафедра медичної фізики та біомедичних нанотехнологій, Харківський національний університет імені В.Н. Каразіна м. Свободи 4, Харків, 61022, Україна bУніверситет Аалборг, вул. Нільса Бора 8,6700 Есб’єрг, Данія https://orcid.org/0000-0002-7677-0779
  • Valeriya Trusova Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7087-071X
  • Mette Thomsen AAU Energy, Aalborg University, Esbjerg, Denmark https://orcid.org/0000-0001-6805-7247
  • Kateryna Vus Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0003-4738-4016
  • Olga Zhytniakivska Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-2068-5823
  • Galyna Gorbenko Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-0954-5053
Keywords: Amyloid fibrils, Polyphenols, Binding sites, Binding affinity, Molecular docking

Abstract

Polyphenols, a versatile group of naturally occurring compounds with many favorable biological properties currently attract increasing research interest in the context of their ability to inhibit the formation and to destabilize special protein aggregates, amyloid fibrils, associated with a number of human diseases. In the present study the molecular docking technique was used to gain insights into molecular details of the interactions between polyphenolic compounds such as quercetin, curcumin, resveratrol, sesamin, salicylic and gallic acids with the mature amyloid fibrils from Abeta peptide, islet amyloid polypeptide, insulin, apolipoprotein A-I and apolipoprotein A-II. All examined polyphenols displayed the highest binding affinities for amyloid fibrils from apolipoprotein A-II and insulin, while the lowest affinities were observed for the fibrillar apolipoprotein A-I. The hydrophobicity/hydrophilicity analysis of amino acid composition of the binding sites showed that hydrophobic and neutral residues play a predominant role in the polyphenol complexation with amyloid fibrils from apolipoprotein A-I, apolipoprotein A-II and insulin, the basic residues essentially contribute to polyphenol association with fibrillar Abeta and islet amyloid polypeptides, while the involvement of acidic residues was revealed only for the complexes sesamin + apolipoprotein A-I / Abeta fibrils and curcumin keto + insulin fibrils. The results obtained may prove useful in the development of novel polyphenol-based anti-amyloid strategies.

Downloads

Download data is not yet available.

References

E. Chatani, K. Yuzu,Y. Ohhashi, and Y. Goto, Int. J. Mol. Sci. 22, 4349 (2021). https://doi.org/10.3390/ijms22094349

B. Liu, H. Zhang, and X. Qinn, Nanomaterials 15, 255 (2025). https://doi.org/10.3390/nano15040255

W. Yao, H. Yang, and J. Yang, Front. Aging Neurosci. 14, 1019412 (2022). https://doi.org/10.3389/fnagi.2022.1019412

P. Bhosale, S. Ha, P. Vetrivel, H. Kim, S. Kim, and G. Kim, Transl. Cancer Res. 9, 7619 (2020). https://doi.org/10.21037/tcr-20-2359

A. Rana, M. Samtiya, T. Dhewa, V. Mishra, and R. Aluko, J. Food. Chem. 46, e14264 (2022). https://doi.org/10.1111/jfbc.14264

Y. Han, H. Yin, C. Xiao, M. Bernards, Y. He, and Y. Guan, ACS Chem. Neurosci. 14, 4051–4061 (2023). https://doi.org/10.1021/acschemneuro.3c00586

G. Martins, C. Nascimento, and N. Galamba, ACS Chem. Neurosci. 14, 1905–1920 (2023). https://doi.org/10.1021/acschemneuro.3c00162

F. Zaidi, and R. Bhat, J. Biomol. Struct. Dyn. 40, 4593–4611 (2020). https://doi.org/10.1080/07391102.2020.1860824

Y. Nian, Y. Zhang, C. Ruan, and B. Hu, Curr. Opin. Food Sci. 43, 99 (2022). https://doi.org/10.1016/j.cofs.2021.11.005

J. Bieschke, J. Russ, R. Friedrich, D. Ehrnhoefer, H. Wobst, K. Neugebauer, and E. Wanker, Proc. Natl. Acad. Sci. U.S. A. 107, 7710–7715 (2010). https://doi.org/10.1073/pnas.0910723107

D. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino, R. Lurz, S. Engemann, A. Pastore, and E. Wanker, Nat. Struct. Mol. Biol. 15, 558–566 (2008). https://doi.org/10.1038/nsmb.1437

Z. Fu, D. Aucoin, M. Ahmed, M. Ziliox, W. Van Nostrand, and S. Smith, Biochemistry 53, 7893–7903 (2014). https://doi.org/10.1021/bi500910b

R. Mishra, D. Sellin, D. Radovan, A. Gohlke, and R. Winter, ChemBioChem 10, 445–449 (2009). https://doi.org/10.1002/cbic.200800762

G. Prasanna, and P. Jing, Spectrochim Acta A Mol Biomol Spectrosc. 246, 119001 (2021). https://doi.org/10.1016/j.saa.2020.119001

K. Siposova, T. Kozar, V. Huntosova, S. Tomkova, and A. Musatov, Biochim. Biophys. Acta - Proteins Proteom. 1867, 259-274 (2019). https://doi.org/10.1016/j.bbapap.2018.10.002

R. Abioye, O. Okagu, and C. Udenigwe, J. Agric. Food Chem. 70, 392–402 (2022). https://doi.org/10.1021/acs.jafc.1c06918

M. Ramezani, M. Hesami, Y. Rafiei, E. Ghareghozloo, A. Meratan, and N. Nikfarjam, ACS Appl. Bio Mater. 4, 3547–3560 (2021). https://doi.org/10.1021/acsabm.1c00068

Y. Yan, H. Tao, J. He, and S-Y. Huang, Nat. Protoc. 15, 1829–1852 (2020). https://doi.org/10.1038/s41596-020-0312-x

Published
2025-09-08
Cited
How to Cite
Malovytsia, U., Trusova, V., Thomsen, M., Vus, K., Zhytniakivska, O., & Gorbenko, G. (2025). Polyphenol Interactions with Amyloid Fibrils: A Molecular Docking Study. East European Journal of Physics, (3), 490-496. https://doi.org/10.26565/2312-4334-2025-3-54

Most read articles by the same author(s)

1 2 3 > >>