Vibrational Frequencies of Dichlorodifluoromethane Using a Lie Algebraic Framework

  • P. Suneetha Department of Mathematics, SAHE-Siddhartha Academy of Higher Education-Deemed to be University, Vijayawada, India
  • B.V.S.N. Hari Prasad Department of Mathematics, Vasireddy Venkatadri Institute of Technology, Nambur, Guntur District, Andhra Pradesh, India
  • J. Vijayasekhar Department of Mathematics, GITAM (Deemed to be University), Hyderabad, India https://orcid.org/0000-0002-2745-7401
Keywords: Lie Algebraic Approach, Vibrational Hamiltonian, Casimir and Majorana Operators, Dichlorodifluoromethane, Anharmonic Vibrational Modes

Abstract

This study introduces a symmetry-adapted Lie algebraic framework, a highly efficient tool for calculating vibrational frequencies in dichlorodifluoromethane (CCl₂F₂). With its C2v point group symmetry, the molecule under consideration is particularly suited for this approach. By formulating carbon-hydrogen(C-H) and carbon-chlorine (C-Cl) bond structures in unitary Lie algebras, the determination of the vibrational quantum states of the molecule becomes remarkably straightforward. The Hamiltonian, including Casimir and Majorana invariant operators and fitted parameters, accurately reproduces the desired vibrational modes using fundamental and higher overtone frequencies. This approach, which compares modern and classical models, underscores the Lie algebraic techniques as efficient tools for modelling anharmonic interactions and transition dynamics on a molecular scale. Beyond its theoretical relevance, the model constructed provides a deep understanding of the vibrational aspects of molecules, a knowledge crucial for practical applications such as spectroscopic data interpretation, the design of materials with desired vibrational characteristics, or the study of molecules in complex environments. These practical applications enhance the versatility of the methodology and have enabled its successful application to molecular spectroscopy, chemical kinetics, and the design of energy-efficient materials and sensors, among other areas. This study provides experimentalists with confidence in the Lie algebraic approach and paves the way for further polyatomic molecule experiments. By significantly contributing to reducing the error margin in computational molecular physics, this methodology opens exciting possibilities for future research and development

Downloads

Download data is not yet available.

References

J. Zhang, Y. Jing, M. Wan, J. Xue, J. Liu, J. Li, and Y. Du, “Investigation into polymorphism within ethenzamide-ethylmalonic acid cocrystal using Raman and terahertz vibrational spectroscopy,” Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 305, 123478 (2024). https://doi.org/10.1016/j.saa.2023.123478

P. Vennila, J. S. Al-Otaibi, G. Venkatesh, Y.S. Mary, V. Raj, N. Acharjee, and P. Tamilselvi, “Structural, spectral, molecular docking, and molecular dynamics simulations of phenylthiophene-2-carboxylate compounds as potential anticancer agents,” Polycycl. Aromat. Compd. 44(1), 238–260 (2023). https://doi.org/10.1080/10406638.2023.2172052

N. Elangovan, S. Sowrirajan, N. Arumugam, A.I. Almansour, M. Altaf, V. Viswanathan, and S.M. Mahalingam, “Computational investigation of molecular structure, spectral analysis, PES study, and molecular docking studies of 4-(butan-2-ylideneamino) benzenesulfonamide,” J. Mol. Struct. 1298(2), 137054 (2024). https://doi.org/10.1016/j.molstruc.2023.137054

M. Benaissa, A. Boukaoud, D. Sebbar, Y. Chiba, and A. Krid, “Periodic and non-periodic DFT studies of an organic semiconductor material: Structural, electronic, optical, and vibrational properties of ninhydrin,” Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 307, 123636 (2024). https://doi.org/10.1016/j.saa.2023.123636

M. Fusè, G. Mazzeo, G. Longhi, S. Abbate, Q. Yang, and J. Bloino, “Scaling-up VPT2: A feasible route to include anharmonic correction on large molecules,” Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 311, 123969 (2024). https://doi.org/10.1016/j.saa.2024.123969

M.M. Ayoob, and F.E. Hawaiz, “Synthesis, crystal structure, DFT calculation and Hirshfeld surface analysis of N-(4-methyl phenyl)-2-(3-nitro-benzamido) benzamide,” Bull. Chem. Soc. Ethiop. 38(1), 229–239 (2024). https://doi.org/10.4314/bcse.v38i1.17

S. Ahmad, M. Kumar, Km. Garima, A. Ali, H. Arora, S. Muthu, and S. Javed, “DFT, molecular docking, molecular dynamics simulation, and Hirshfeld surface analysis of 2-phenylthioaniline,” Polycycl. Aromat. Compd. 44(9), 5876–5898 (2023). https://doi.org/10.1080/10406638.2023.2270128

Y. Dague, S.J. Koyambo-Konzapa, H. Nose, et al., “DFT investigation on the structural and vibrational behaviours of the non-protein amino acids in hybrid explicit/continuum solvent: a case of the zwitterions γ-aminobutyric and α-aminoisobutyric acids,” J. Mol. Model. 30, 17 (2024). https://doi.org/10.1007/s00894-023-05817-9

A. Zochedh, K. Chandran, A. Shunmuganarayanan, and A. B. Sultan, “Exploring the synergistic effect of tegafur-syringic acid adduct against breast cancer through DFT computation, spectroscopy, pharmacokinetics, and molecular docking simulation,” Polycycl. Aromat. Compd. 44(4), 2153–2187 (2023). https://doi.org/10.1080/10406638.2023.2214281

T. Valarmathi, R. Premkumar, E.J.J. Samuel, and A.M.F. Benial, “Spectroscopic characterization, quantum chemical, and molecular docking studies on 1-chloroanthraquinone: A novel oral squamous cell carcinoma drug,” Polycycl. Aromat. Compd. 44(3), 1816–1834 (2023). https://doi.org/10.1080/10406638.2023.2209249

Y. Syetov, “Thermal expansion and vibrational spectra of paratellurite in quasiharmonic approximation,” Ukr. J. Phys. Opt. 26(1), 01032–01039 (2025). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2025.01032

K. Smit, J. Matysik, P. Hildebrandt, and F. Mark, “Vibrational analysis of biliverdin dimethyl ester,” J. Phys. Chem. 97(46), 11887–11900 (1993). https://doi.org/10.1021/j100148a009

V.J. Esposito, P. Ferrari, W.J. Buma, C. Boersma, C.J. Mackie, A. Candian, R.C. Fortenberry, et al., “Anharmonicity and deuteration in the IR absorption and emission spectrum of phenylacetylene,” Mol. Phys. 122(7–8) (2023). https://doi.org/10.1080/00268976.2023.2261570

G. Pitsevich, and A. Malevich, “Symmetry properties, tunneling splittings of some vibrational energy levels and torsional IR spectra of the trans- and cis-conformers of hydroquinone molecule,” J. Mol. Spectrosc. 404, 111937 (2024). https://doi.org/10.1016/j.jms.2024.111937

S. Nallagonda, and V. Jaliparthi, “Higher overtone vibrational frequencies in naphthalene using the Lie algebraic technique,” Ukr. J. Phys. Opt. 25(2), 02080–02085 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.02080

S. Teppala, and V. Jaliparthi, “Exploring cyclohexane vibrational dynamics through a Lie algebraic Hamiltonian framework,” Ukr. J. Phys. Opt. 25(3), 03093–03100 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.03093

S. Teppala, and V. Jaliparthi, “Vibrational frequencies of tetrachloroethylene using Lie algebraic framework,” Momona Ethiop. J. Sci. (MEJS), 16(2), 281–288 (2024). https://doi.org/10.4314/mejs.v16i2.6

K. Lavanya, M.P. Kumari, and J. Vijayasekhar, “Vibrational frequencies of phosphorus trichloride with the vibrational Hamiltonian,” East Eur. J. Phys. (2), 407–410 (2024). https://doi.org/10.26565/2312-4334-2024-2-52

K. Lavanya, A.G. Rao, and J. Vijayasekhar, “Vibrational Hamiltonian of carbonyl sulphide and hydrogen cyanide,” East Eur. J. Phys. (1), 432–435 (2024). https://doi.org/10.26565/2312-4334-2024-1-46

M.R. Balla, and V. Jaliparthi, “Vibrational Hamiltonian of methylene chloride using U(2) Lie algebra,” Mol. Phys. 119(5), (2020). https://doi.org/10.1080/00268976.2020.1828634

F. Iachello, and R.D. Levine, Algebraic theory of molecules, (Oxford University Press, Oxford, 1995).

S. Oss, “Algebraic models in molecular spectroscopy,” Adv. Chem. Phys. 93, 455-649 (1996).

K.K. Irikura, Erratum: Experimental Vibrational Zero-Point Energies: Diatomic Molecules [J. Phys. Chem. Ref. Data 36, 389-397 (2007)]. J. Phys. Chem. Ref. Data, 38(3), 749 (2009). https://doi.org/10.1063/1.3167794

T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated Volume II, J. Phys. Chem. Ref. Data, 6(3), 993 1102 (1972).

Published
2025-06-09
Cited
How to Cite
Suneetha, P., Hari Prasad, B., & Vijayasekhar, J. (2025). Vibrational Frequencies of Dichlorodifluoromethane Using a Lie Algebraic Framework. East European Journal of Physics, (2), 276-280. https://doi.org/10.26565/2312-4334-2025-2-33