Analysis of Higher Overtone Vibrational Frequencies in Cyclohexane Using a Lie Algebraic Approach

  • J. Vijayasekhar Department of Mathematics, GITAM (Deemed to be University), Hyderabad, India https://orcid.org/0000-0002-2745-7401
  • M.V. Subba Rao Department of Mathematics, Anil Neerukonda Institute of Technology & Sciences (ANITS), Visakhapatnam, India
  • T. Sreenivas Department of Mathematics, Anil Neerukonda Institute of Technology & Sciences (ANITS), Visakhapatnam, India; Department of Mathematics, Jawaharlal Nehru Technological University, Kakinada, India
Keywords: Lie algebraic approach, Vibrational frequencies, Vibrational Hamiltonian, Cyclohexane

Abstract

This study contains a sophisticated computational approach to predict cyclohexane while maintaining the D3d point group symmetry higher overtone vibrational frequencies (C6H12), precisely, third, fourth, and fifth. We utilize a Lie algebraic approach within the context of the vibrational Hamiltonian. The method uses cyclohexane's carbon-hydrogen (C-H) and carbon-carbon (C-C) bonds as unitary Lie algebras, accurately modelling the molecular vibrational structure. Thus, the vibrational Hamiltonian takes Casimir and Majorana's invariant operators and parameters and successfully outlines the molecules' vibrational modes. This Lie algebraic approach clearly outlined cyclohexane's higher overtone vibrational dynamics and provided helpful information that can be applied in other fields of study and technology.

Downloads

References

I.S. Butler, R.P. Kengne-Momo, G. Jaouen, C. Policar, and A. Vessières, “Recent Analytical Applications of Molecular Spectroscopy in Bioorganometallic Chemistry—Part I: Metal Carbonyls,” Appl. Spectrosc. Rev. 47(7), 531–549 (2012). https://doi.org/10.1080/05704928.2012.673189

I.S. Butler, R.P. Kengne-Momo, A. Vessières, G. Jaouen, and C. Policar, “Recent Applications of Molecular Spectroscopy in Bioorganometallic Chemistry–Part 2: Ferrocenes and Other Organometallic Complexes,” Appl. Spectrosc. Rev. 47(8), 620–632 (2012). https://doi.org/10.1080/05704928.2012.697088

S. Brodersen, and J.-E. Lolck, “Calculation of rotation-vibrational energies directly from an anharmonic potential function,” J. Mol. Spectrosc. 126(2), 405-426 (1987). https://doi.org/10.1016/0022-2852(87)90246-3

P.T. Panek, A.A. Hoeske, and C.R. Jacob, “On the choice of coordinates in anharmonic theoretical vibrational spectroscopy: Harmonic vs. anharmonic coupling in vibrational configuration interaction,” J. Chem. Phys. 150(5), 054107 (2019). https://doi.org/10.1063/1.5083186

K.B. Beć, J. Grabska, and C.W. Huck, “Current and future research directions in computer-aided near-infrared spectroscopy: A perspective,” Spectrochim. Acta A. 254, 119625 (2021). https://doi.org/10.1016/j.saa.2021.119625

G. Pitsevich, and A. Malevich, “Symmetry properties, tunneling splittings of some vibrational energy levels and torsional IR spectra of the trans- and cis-conformers of hydroquinone molecule,” J. Mol. Spectrosc. 404, 111937 (2024). https://doi.org/10.1016/j.jms.2024.111937

G. Pandimeena, T. Mathavan, E.J.J. Samuel, and A.M.F. Benial, “Quantum chemical, spectroscopic and molecular docking studies on methyl 2-chloro-6-methyl pyridine-4-carboxylate: A potential inhibitor for irritable bowel syndrome,” Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 294, 122544 (2023). https://doi.org/10.1016/j.saa.2023.122544

A.V. Nikitin, A. Campargue, A.E. Protasevich, M. Rey, K. Sung, and Vl.G. Tyuterev, “Analysis of experimental spectra of phosphine in the Tetradecad range near 2.3 μm using ab initio calculations,” Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 302, 122896 (2023). https://doi.org/10.1016/j.saa.2023.122896

I.M. Chandramalar, and V.P. Subhasini, “Vibrational spectroscopic analysis of 2,3:4,5-Bis-O-(1-methylethylidene)beta-D-fructopyranose Sulfamate (Topiramate) by density functional method,” Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 302, 122997 (2023). https://doi.org/10.1016/j.saa.2023.122997

V. Jaliparthi, “Vibrational Energies of Silylene, Difluorosilylene and Dichlorosilylene, Using U(2) Lie Algebraic Model,” Ukr. J. Phys. Opt. 23(3), 126-132 (2022). https://doi.org/10.3116/16091833/23/3/126/2022

A.G. Rao, K. Lavanya, and J. Vijayasekhar, “Higher Overtone Vibrational Frequencies of Cyclobutane-D8 Using Lie Algebraic Framework,” East Eur. J. Phys. (2), 411-415 (2024). https://doi.org/10.26565/2312-4334-2024-2-53

J. Vijayasekhar, P. Suneetha, and K. Lavanya, “Vibrational spectra of cyclobutane-d8 using symmetry-adapted one-dimensional Lie algebraic framework,” Ukr. J. Phys. Opt. 24, 193-199 (2023). https://doi.org/10.3116/16091833/24/3/193/2023

F. Iachello, and R.D. Levine, Algebraic theory of molecules, (Oxford University Press, Oxford, 1995).

S. Oss, “Algebraic models in molecular spectroscopy,” Adv. Chem. Phys. 93, 455-649 (1996).

T. Sreenivas, and J. Vijayasekhar, “Exploring Cyclohexane Vibrational Dynamics Through a Lie Algebraic Hamiltonian Framework,” Ukr. J. Phys. Opt. 25(3), 03093-03100 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.03093

Published
2025-03-03
Cited
How to Cite
Vijayasekhar, J., Rao, M. S., & Sreenivas, T. (2025). Analysis of Higher Overtone Vibrational Frequencies in Cyclohexane Using a Lie Algebraic Approach. East European Journal of Physics, (1), 340-344. https://doi.org/10.26565/2312-4334-2025-1-41