Vibrational Frequencies of Phosphorus Trichloride with the Vibrational Hamiltonian

  • J. Vijayasekhar Department of Mathematics, GITAM (Deemed to be University), Hyderabad, India https://orcid.org/0000-0002-2745-7401
  • K. Lavanya Department of Mathematics, St. Francis College for Women, Begumpet, Hyderabad, India; Department of Mathematics, GITAM (Deemed to be University), Hyderabad, India
  • M.V. Phani Kumari Department of Mathematics, GITAM (Deemed to be University), Hyderabad, India
Keywords: Molecular Physics, Vibrational frequencies, Phosphorus trichloride, Vibrational Hamiltonian, Lie algebraic method

Abstract

This study presents an approach for precisely determining the stretching vibrational frequencies of the P-Cl bond in phosphorus trichloride (PCl3) using a vibrational Hamiltonian framework that maintains the C3v symmetry point group. Our methodology enables the accurate prediction of vibrational frequencies up to the fifth overtone. It identifies related combination bands, marking a significant advancement in vibrational spectroscopy and molecular modelling. By enhancing the accuracy and depth of our understanding of molecular vibrations, this research paves the way for developing more sophisticated computational models, thereby significantly improving the precision of chemical analyses, and contributing to the broader field of chemical physics.

Downloads

Download data is not yet available.

References

S. Oss, “Algebraic models in molecular spectroscopy,” in: Advances in Chemical Physics: New Methods in Computational Quantum Mechanics, edited by I. Prigogine, and S. A. Rice, vol. 93, (John Wiley & Sons, Inc., 1996), pp. 455–649. https://doi.org/10.1002/9780470141526.ch8

F. Iachello, and R.D. Levine, Algebraic Theory of Molecules, (Oxford University Press, Oxford, 1995).

F. Iachello, “Algebraic methods for molecular rotation-vibration spectra,” Chem. Phys. Lett. 78(3), 581–585 (1981). https://doi.org/10.1016/0009-2614(81)85262-1

V. Jaliparthi, and M.R. Balla, “Vibrational Hamiltonian of Tetrachloro-, Tetrafluoro-, and Mono- Silanes Using U(2) Lie Algebras,” Spectrochim. Acta A, 264, 120289 (2022). https://doi.org/10.1016/j.saa.2021.120289

M.R. Balla, and V. Jaliparthi, “Vibrational Hamiltonian of Methylene Chloride Using U(2) Lie Algebra,” Mol. Phys. 115, e1828634 (2021). https://doi.org/10.1080/00268976.2020.1828634

V. Jaliparthi, P. Suneetha, and K. Lavanya, “Vibrational spectra of cyclobutane-d8 using symmetry-adapted one-dimensional Lie algebraic framework,” Ukr. J. Phys. Opt. 24, 193–199 (2023). https://doi.org/10.3116/16091833/24/3/193/2023

M.R. Balla, and V. Jaliparthi, “Vibrational Hamiltonian of Naphthalene (C10H8) Using Dynamical U(2) Lie Algebras,” Polycycl. Aromat. Compd. 42(7), 4684–4699 (2022). https://doi.org/10.1080/10406638.2021.1901126

S. Nallagonda, and V. Jaliparthi, “Higher Overtone Vibrational Frequencies in Naphthalene Using the Lie Algebraic Technique,” Ukr. J. Phys. Opt. 25(2), 02080–02085 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.02080

J. Choudhury, N.K. Sarkar, and R. Bhattacharjee, “Infrared Spectra of PH3 and NF3: An Algebraic Approach,” Chinese Phys. Lett. 30(7), 070301 (2013). https://doi.org/10.1088/0256-307X/30/7/070301

K. Lavanya, A.G. Rao, and J. Vijayasekhar, “Vibrational Hamiltonian of Carbonyl Sulphide and Hydrogen Cyanide,” East Eur. J. Phys., (1), 432–435 (2024). https://doi.org/10.26565/2312-4334-2024-1-46

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, (Wiley, New York, 2009).

K.P. Huber, and G. Herzberg, Molecular Spectra and Molecular Structure. IV: Constants of Diatomic Molecules, (Van Nostrand Reinhold, New York, 1979).

T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated, Vol. I, (National Bureau of Standards, 1972).

Published
2024-06-01
Cited
How to Cite
Vijayasekhar, J., Lavanya, K., & Phani Kumari, M. (2024). Vibrational Frequencies of Phosphorus Trichloride with the Vibrational Hamiltonian. East European Journal of Physics, (2), 407-410. https://doi.org/10.26565/2312-4334-2024-2-52