Vibrational Hamiltonian of Carbonyl Sulphide and Hydrogen Cyanide

  • K. Lavanya Department of Mathematics, St. Francis College for Women, Begumpet, Hyderabad, India; Department of Mathematics, GITAM (Deemed to be University), Hyderabad, India
  • A. Ganapathi Rao Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam, India
  • J. Vijayasekhar Department of Mathematics, GITAM (Deemed to be University), Hyderabad, India
Keywords: Hamiltonian operator, Lie algebraic method, Carbonyl sulphide, Hydrogen cyanide, Morse Oscillator


This study thoroughly investigates the vibrational frequencies of carbonyl sulphide (12C16O32S) and hydrogen cyanide (HCN) up to the fifth harmonic level. It offers comprehensive insights into vibrational modes by using the Hamiltonian operator formalism and concentrating on invariant operators and algebraic parameters with a one-dimensional Lie algebraic method. The findings are significant for atmospheric chemistry, spectroscopy, and quantum chemistry, contributing to a deeper understanding of molecular dynamics. This research sets the groundwork for future studies in comparable compounds and applications.


Download data is not yet available.


F. Iachello, “Algebraic methods for molecular rotation-vibration spectra,” Chem. Phys. Lett. 78(3), 581-585 (1981).

F. Iachello, and R.D. Levine, Algebraic theory of molecules, (Oxford University Press, Oxford, 1995).

S. Oss, “Algebraic models in molecular spectroscopy,” in: Advances in Chemical Physics: New Methods in Computational Quantum Mechanics, edited by I. Prigogine, and S.A. Rice, vol. 93, (John Wiley & Sons, Inc., 1996). pp. 455 649.

F. Iachello, and A. Arima, The interacting Boson model, (Cambridge University Press, Cambridge, 1987).

M.R. Balla, and V. Jaliparthi, “Vibrational Hamiltonian of Methylene Chloride Using U(2) Lie Algebra,” Mol. Phys. 115, e1828634 (2021).

M.R. Balla, S. Venigalla, V. Jaliparthi, “Calculation of Vibrational Frequencies of Sulfur Dioxide by Lie Algebraic Framework,” Acta Phys. Pol. A, 140(2), 138-140 (2021).

V. Jaliparthi, “Vibrational Energies of Silylene, Difluorosilylene and Dichlorosilylene, Using U(2) Lie Algebraic Model,” Ukr. J. Phys. Opt. 23(3), 126-132 (2022).

N.K. Sarkar, J. Choudhury, S.R. Karumuri, and R. Bhattacharjee, “A comparative study of the vibrational spectra of OCS and HCP using the Lie algebraic method,” Eur. Phys. J. D, 53, 163–171 (2009).

N.K. Sarkar, J. Choudhury, and R. Bhattacharjee, “An algebraic approach to the study of the vibrational spectra of HCN,” Molecular Physics, 104(19), 3051-3055 (2006).

A. Mengoni, and T. Shirai, “Vibron Model Description of Vibrational Spectra of the HCO and DCO Molecules,” J. Mol. Spectrosc. 162(1), 246-256 (1993).

M.R. Balla, and V. Jaliparthi, “Vibrational Hamiltonian of Naphthalene (C10H8) Using Dynamical U(2) Lie Algebras,” Polycycl. Aromat. Compd. 42(7), 4684-4699 (2022).

V. Jaliparthi, and M.R. Balla, “Vibrational Hamiltonian of Tetrachloro-, Tetrafluoro-, and Mono- Silanes Using U(2) Lie Algebras,” Spectrochim. Acta A, 264, 120289 (2022).

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, (Wiley, New York, 2009).

K.P. Huber, and G. Herzberg, Molecular Spectra and Molecular Structure. IV: Constants of Diatomic Molecules, (Van Nostrand Reinhold, New York, 1979.

K.K. Irikura, “Experimental Vibrational Zero-Point Energies: Diatomic Molecules,” J. Phys. Chem. Ref. Data, 36(2), 389-397 (2007).

T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated, vol. I, National Bureau of Standards, 39, 1 160 (U.S. Government Printing Office, 1972).

How to Cite
Lavanya, K., Rao, A. G., & Vijayasekhar, J. (2024). Vibrational Hamiltonian of Carbonyl Sulphide and Hydrogen Cyanide. East European Journal of Physics, (1), 432-435.