Anisotropic Cosmological Model with SQM in f(R, Lm) Gravity
Abstract
A locally rotationally symmetric Bianchi-I model filled with strange quark matter (SQM) is explored in f(R, Lm) gravity as a non-linear functional of the form f(R, Lm)=R/2 +Lαm, where α is the free model parameter. We considered the special law of variation of Hubble’s parameter proposed by Berman (1983) and also used the power law relation between the scale factors to obtain the exact solution of the field equation, which matches the model of the universe. We also analyze the physical and geometrical aspects of the universe’s kinematic and dynamic behavior. Additionally, we employ equation-of-state (EoS) parameters and statefinder parameters as analytical tools to gain insights into the evolution of the universe. We use the ΛCDM model as a benchmark to validate the results. By placing the deviations of the universe from ΛCDM model and yet making important contributions to the study of the anisotropic nature of f(R, Lm) gravity within the framework of cosmological dynamics, the paper increases our comprehension of our cosmic evolution.
Downloads
References
A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M Garnavich, R.L. Gilliland, et al., ”Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The astronomical journal, 116(3), 1009 (1998). https://doi.org/10.1086/300499
S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, et al., ”Measurements of ω and λ from 42 high-redshift supernovae,” The Astrophysical Journal, 517(2), 565 (1999). https://doi.org/10.1086/307221
A.G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H.C. Ferguson, B. Mobasher, P. Challis, et al., ”Type ia supernova discoveries at z>1 from the hubble space telescope: Evidence for past deceleration and constraints on dark energy evolution,” The Astrophysical Journal, 607(2), 665 (2004). https://doi.org/10.1086/383612
D.J. Eisenstein, I. Zehavi, D.W. Hogg, R. Scoccimarro, M.R. Blanton, R.C. Nichol, R. Scranton, et al., ”Detection of the baryon acoustic peak in the large-scale correlation function of sdss luminous red galaxies,” The Astrophysical Journal, 633(2), 560 (2005). https://doi.org/10.1086/466512
W.J. Percival, B.A. Reid, D.J. Eisenstein, N.A. Bahcall, T. Budavari, J.A. Frieman, M. Fukugita, et al., ”Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample,” Monthly Notices of the Royal Astronomical Society, 401(4), 2148–2168 (2010). https://doi.org/10.1111/j.1365-2966.2009.15812.x
D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, M. Halpern, et al., ”First-year wilkinson microwave anisotropy probe (wmap)* observations: determination of cosmological parameters,” The Astrophysical Journal Supplement Series, 148(1), 175 2003. https://doi.org/10.1086/377226
T. Koivisto, and D. F Mota, ”Dark energy anisotropic stress and large scale structure formation,” Physical Review D, 73(8), 083502 (2006). https://doi.org/10.1103/PhysRevD.73.083502
S.F. Daniel, R.R. Caldwell, A. Cooray, and A. Melchiorri, ”Large scale structure as a probe of gravitational slip,” Physical Review D, 77(10), 103513 (2008). https://doi.org/10.1103/PhysRevD.77.103513
M. Colless, G. Dalton, S. Maddox, W. Sutherland, P. Norberg, S. Cole, J. Bland-Hawthorn, et al., ”The 2df galaxy redshift survey: spectra and redshifts,” Monthly Notices of the Royal Astronomical Society, 328(4), 1039–1063 (2001). https://doi.org/10.1046/j.1365-8711.2001.04902.x
C.L. Bennett, M. Bay, M. Halpern, G. Hinshaw, C. Jackson, N. Jarosik, A. Kogut, et al., ”The microwave anisotropy probe mission,” The Astrophysical Journal, 583(1), 1 (2003). https://doi.org/10.1086/345346
R.R. Caldwell, and M. Doran, ”Cosmic microwave background and supernova constraints on quintessence: concordance regions and target models,” Physical Review D, 69(10), 103517 (2004). https://doi.org/10.1103/PhysRevD.69.103517
B. Clegg, Dark matter and dark energy: the hidden 95 of the universe, (Icon Books, 2019).
T. Chiba, T. Okabe, and M. Yamaguchi, ”Kinetically driven quintessence,” Physical Review D, 62(2), 023511 (2000). https://doi.org/10.1103/PhysRevD.62.023511
C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhardt, ”Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration,” Physical Review Letters, 85(21), 4438 (2000). https://doi.org/10.1103/PhysRevLett.85.4438
C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhardt, ”Essentials of k-essence,” Physical Review D, 63(10), 103510 (2001). https://doi.org/10.1103/PhysRevD.63.103510
M.C. Bento, O. Bertolami, and A.A. Sen, ”Generalized chaplygin gas, accelerated expansion, and dark-energy matter unification,” Physical Review D, 66(4), 043507 (2002). https://doi.org/10.1103/PhysRevD.66.043507
A. Kamenshchik, U. Moschella, and V. Pasquier, ”An alternative to quintessence,” Physics Letters B, 511(2-4), 265–268 (2001). https://doi.org/10.1016/S0370-2693(01)00571-8
H.A. Buchdahl, ”Non-linear lagrangians and cosmological theory,” Monthly Notices of the Royal Astronomical Society, 150(1), 1–8 (1970). https://doi.org/10.1093/mnras/150.1.1
T. Harko, F.S.N. Lobo, S. Nojiri, and S.D. Odintsov, ”f(R,T) gravity,” Physical Review D, 84(2), 024020 (2011). https://doi.org/10.1103/PhysRevD.84.024020
B. Li, J. D Barrow, and D.F. Mota, ”Cosmology of modified gauss-bonnet gravity,” Physical Review D, 76(4), 044027 (2007). https://doi.org/10.1103/PhysRevD.76.044027
A. De Felice, and S. Tsujikawa, ”Construction of cosmologically viable f(G) gravity models,” Physics Letters B, 675(1), 1–8 (2009). https://doi.org/10.1016/j.physletb.2009.03.060
K. Bamba, M. Ilyas, M.Z. Bhatti, and Z. Yousaf, ”Energy conditions in modified f(G) gravity,” General Relativity and Gravitation, 49, 112 (2017). https://doi.org/10.1007/s10714-017-2276-x
A´ . De la Cruz-Dombriz, and D. Sa´ez-Go´mez, ”On the stability of the cosmological solutions in f(R,G) gravity,” Classical and Quantum Gravity, 29(24), 245014 (2012). https://doi.org/10.1088/0264-9381/29/24/245014
M. De Laurentis, M. Paolella, and S. Capozziello, ”Cosmological inflation in f(R,G) gravity,” Physical Review D, 91(8), 083531 (2015). https://doi.org/10.1103/PhysRevD.91.083531
E.V. Linder, ”Einstein’s other gravity and the acceleration of the universe,” Physical Review D, 81(12), 127301 (2010). https://doi.org/10.1103/PhysRevD.81.127301
K. Bamba, C.-Q. Geng, C.-C. Lee, and L.-W. Luo, ”Equation of state for dark energy in f(T) gravity,” Journal of Cosmology and Astroparticle Physics, 2011(01), 021 (2011). https://doi.org/10.1088/1475-7516/2011/01/021
B. Li, T.P. Sotiriou, and J.D. Barrow, ”Large-scale structure in f(T) gravity,” Physical Review D, 83(10), 104017 (2011). https://doi.org/10.1103/PhysRevD.83.104017
Y. Xu, G. Li, T. Harko, and S.-D. Liang, ”f(Q,T) gravity,” The European Physical Journal C, 79, 708 (2019). https://doi.org/10.1140/epjc/s10052-019-7207-4
T. Harko, and F.S.N. Lobo, ”f(R,Lm) gravity,” The European Physical Journal C, 70, 373–379 (2010). https://doi.org/10.1140/epjc/s10052-010-1467-3
O. Bertolami, C.G. Boehmer, T. Harko, and F.S.N. Lobo, ”Extra force in f(R) modified theories of gravity,” Physical Review D, 75(10), 104016 (2007). https://doi.org/10.1103/PhysRevD.75.104016
J. Wang and K. Liao, ”Energy conditions in f(R,Lm) gravity,” Classical and Quantum Gravity, 29(21), 215016 (2012). https://doi.org/10.1088/0264-9381/29/21/215016
Y.-B. Wu, Y.-Y. Zhao, Y.-Y. Jin, L.-L. Lin, J.-B. Lu, and X. Zhang, ”Constraints of energy conditions and dk instability criterion on f(R,Lm) gravity models,” Modern Physics Letters A, 29(22), 1450089 (2014). https://doi.org/10.1142/S0217732314500898
T. Harko, F.S.N. Lobo, and O. Minazzoli, ”Extended f(R,Lm) gravity with generalized scalar field and kinetic term dependences,” Physical Review D, 87(4), 047501 (2013). https://doi.org/10.1103/PhysRevD.87.047501
T. Harko, and M.J, Lake, ”Cosmic strings in f(R,Lm) gravity,” The European Physical Journal C-Particles and Fields, 75(2), 60 (2015). https://doi.org/10.1140/epjc/s10052-015-3287-y
L.V. Jaybhaye, R. Solanki, S. Mandal, and P.K. Sahoo, ”Cosmology in f(R,Lm) gravity,” Physics Letters B, 831, 137148 (2022). https://doi.org/10.1016/j.physletb.2022.137148
L.V. Jaybhaye, S. Mandal, and P.K. Sahoo, ”Constraints on energy conditions in f(R,Lm) gravity,” International Journal of Geometric Methods in Modern Physics, 19(04), 2250050 (2022). https://doi.org/10.1142/S0219887822500505
L.V. Jaybhaye, S. Bhattacharjee, and P.K. Sahoo, ”Baryogenesis in f(R,Lm) gravity,” Physics of the Dark Universe, 40, 101223 (2023). https://doi.org/10.1016/j.dark.2023.101223
N.S. Kavya, V. Venkatesha, S. Mandal, and P.K. Sahoo, ”Constraining anisotropic cosmological model in f(R,Lm) gravity,” Physics of the Dark Universe, 38, 101126 (2022). https://doi.org/10.1016/j.dark.2022.101126
D.C. Maurya, ”Accelerating scenarios of massive universe in f(R,Lm)-gravity,” New Astronomy, 100, 101974 (2023). https://doi.org/10.1016/j.newast.2022.101974
R. Solanki, Z. Hassan, and P.K. Sahoo, ”Wormhole solutions in f(R,Lm) gravity,” Chinese Journal of Physics, 85, 74–88 (2023). https://doi.org/10.1016/j.cjph.2023.06.005
A.K. Yadav, L.K. Sharma, B.K. Singh, and P.K. Sahoo, ”Existence of bulk viscous universe in f(R,T) gravity and confrontation with observational data,” New Astronomy, 78, 101382 (2020). https://doi.org/10.1016/j.newast.2020.101382
K.S. Wankhade, A.Y. Shaikh, and S.N. Khan, ”Interacting two fluid dark energy bianchi type-i radiating cosmological model in f(R) gravity,” Prespacetime Journal, 13(3), (2022).
[43] V.R. Patil, P.A. Bolke, S.K. Waghmare, and J.L. Pawade. Cosmological power law model and exponential model in f(R) gravity. Prespacetime Journal, 14(6), 2023. https://prespacetime.com/index.php/pst/article/view/1852/1734
V. Singh, and A. Beesham, ”LRS Bianchi I model with strange quark matter and Λ(t) in f(R,T) gravity,” New Astronomy, 89, 101634 (2021). https://doi.org/10.1016/j.newast.2021.101634
A. Pradhan, A. Dixit, and G. Varshney, ”LRS bianchi type-i cosmological models with periodic time varying deceleration parameter in f(R,T) gravity,” International Journal of Modern Physics A, 37(18), 2250121 (2022). https://doi.org/10.1142/S0217751X22501214
V.R. Patil, P.A. Bolke, S.K.Waghmare, and J.L. Pawde, ”Energy conditions and statefinder diagnostic of cosmological model with special law of hubble parameter in f(R,T) gravity,” East European Journal of Physics, (3), 53–61 (2023). https://doi.org/10.26565/2312-4334-2023-3-03
Y.S. Solanke, A.P. Kale, D.D. Pawar, and V.J. Dagwal, ”LRS bianchi type-i cosmological model in f(Q,T) theory of gravity with observational constraints,” International Journal of Geometric Methods in Modern Physics, 20(12), 2350212 (2023). https://doi.org/10.1142/S0219887823502122
T. Harko, F.S.N. Lobo, J.P. Mimoso, and D. Pav´on, ”Gravitational induced particle production through a nonminimal curvature–matter coupling,” The European Physical Journal C, 75, 386 (2015). https://doi.org/10.1140/epjc/s10052-015-3620-5
M.S. Berman, ”A special law of variation for Hubble’s parameter,” Nuovo Cimento B Serie, 74, 182–186 (1983). https://doi.org/10.1007/BF02721676
V. Sahni, T.D. Saini, A.A. Starobinsky, and U. Alam, ”Statefinder—a new geometrical diagnostic of dark energy,” Journal of Experimental and Theoretical Physics Letters, 77, 201–206 (2003). https://doi.org/10.1134/1.1574831
U. Alam, V. Sahni, T.D. Saini, and A.A. Starobinsky, ”Exploring the expanding universe and dark energy using the statefinder diagnostic,” Monthly Notices of the Royal Astronomical Society, 344(4), 1057–1074 (2003). https://doi.org/10.1046/j.1365-8711.2003.06871.x
P.K. Agrawal, and D.D. Pawar, ”Plane symmetric cosmological model with quark and strange quark matter in f(R,T) theory of gravity,” Journal of Astrophysics and Astronomy B, 38, 2 (2017). https://doi.org/10.1007/s12036-016-9420-y
S.-L. Cao, S. Li, H.-R. Yu, and T.-J. Zhang, ”Statefinder diagnostic and constraints on the palatini f(R) gravity theories,” Research in Astronomy and Astrophysics, 18(3), 026 (2018). https://doi.org/10.1088/1674-4527/18/3/26
G. Gadbail, S. Arora, and P.K. Sahoo, ”Power-law cosmology in Weyl-type f(Q,T) gravity,” The European Physical Journal Plus, 136(10), 1040 (2021). https://doi.org/10.1140/epjp/s13360-021-02048-w
Copyright (c) 2024 Pravin Bolke, Vasudeo Patil, Sachin Waghmare, Neha Mahajan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).