Energy Conditions with Interacting Field in f(R) Gravity

  • Vasudeo Patil Department of Mathematics, Arts, Science and Commerce College, Chikhaldara, Dist. Amravati (MS), India
  • Jeevan Pawde Arts, Commerce and Science College, Chikhaldara, Dist. Amravati (MS), India-444807
  • Rahul Mapari Department of Mathematics, Government Vidarbha Institute of Science & Humanities, Amravati (MS), India-444604
  • Pravin Bolke Department of Mathematics, Prof. Ram Meghe College of Eng. & Management, New Express Highway, Amravati (MS), India-444701
Keywords: FLRW cosmological model, f(R) gravity, Interacting field, Hubble’s law


In the context of current scenario, it is crucial to look beyond Einstein’s theory, which opens the door to certain modified theories of gravity. So, present study is devoted to investigate the various energy conditions, particularly, strong energy condition (SEC), weak energy condition (WEC), null energy condition (NEC) and dominant energy condition (DEC) corresponding to different functional forms of f(R) gravity. We have studied for flat, isotropic and homogeneous FLRW cosmological model filled with interacting field i.e., perfect fluid is coupled with mass less scalar field for different models of modified f(R) gravity in which R is the Ricci scalar. We have observed, the accelerated expansion of the Universe which exact match with recent observational evidences.


Download data is not yet available.


A.G. Riess, et al., Astron. J. 116, 1009 (1998).

S. Perlmutter, et al., Astrophys. J. 517, 565 (1999).

C.L. Bennet, et al., Astrophys. J. Suppl. 148, 1 (2003).

A.G. Riess, et al., Astrophys. J. 607, 665 (2004).

D.J. Eisenstein, et al. Astrophys. J. 633, 560 (2005).

P. Astier, et al., Astron. Astrophys. 447, 31 (2006).

T. Padmanabhan, Phys. Rept. 380, 235 (2003).

P.J.E. Peebles, and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).

S. Nojiri, and S. Odintsov, Phys. Rev. D, 68, 123512 (2003).

R. Femaro, and F. Fiorini, Phys. Rev. D, 75, 084031 (2007).

S. Nojiri, S. Odinstov, and P. Tretyakov, Prog. Theor. Phys. Suppl. 172, 81 (2008).

T. Harko, F.S.N. Lobo, S. Nojiri, and S.D. Odintsov, Phys. Rev. D, 84, 024020 (2011).

H.A. Buchadahl, Mon. Not. Roy. Astron. Soc. 150, 1 (1970).

S. Nojiri, and S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).

T. Multamaki, and I. Vilja, Phys. Rev. D, 74, 064022 (2006).

T. Multamaki, and I. Vilja, Phys. Rev. D, 76, 064021 (2007).

M.F. Shamir, Astrophys. Space Sci, 330, 183 (2010).

M. Sharif, and H.R. Kausar, Phys. Lett. B, 697, 1 (2011).

M.F. Shamir, Int. J. Theor. Phys. 50, 637 (2011).

K.S. Adhav, Bulg. J. Phys. 39, 197 (2012). 3 197-206.pdf

M.F. Shamir, and Z. Raza, Can. J. Phys. 93, 1 (2015).

S.D. Katore, S.P. Hatkar, and R.J. Baxi, Found. of Phys. 46, 409 (2016).

S.R. Bhoyar, V.R. Chirde, and S.H. Shekh, Prespacetime J. 7(3), 456 (2016).

M.V. Santhi, V.U.M. Rao and Y. Aditya, Can. J. Phys. 96, 1 (2017).

A.V. Astashenok, S.D. Odintsov, and A. Cruz-Dombriz, Class. Quantum Grav. 34, 205008 (2017).

M.V. Santhi, Y. Sobhanbabu, and B.J.M. Raoz, J. Phys.: Conf. Ser. 1344, 012038 (2019).

A.H. Hasmani, and A.M. Al-Haysah, Appl. Appl. Math, 14, 334 (2019).

S.D. Katore, and S.V. Gore, J. Astrophys. Astr. 41, 12 (2020).

A.M. Al-Haysah, and A.H. Hasmani, Heliyon, 7(9), e08063 (2021).

V.U.M. Rao, M.V. Santhi, and Y. Aditya, Prespacetime J. 6(6), 531-539 (2015).

D.D. Pawar, V.J. Dagwal, and P.K. Agrawal, Malaya J. Mat. 4(1), 111 (2016). 14.pdf

G.K. Goswami, A. Pradhan, M. Mishra, and A. Beesham, New Astronomy, 73, 101284 (2019).

S.V. Lohakare, F. Tello-Ortiz, S.K. Tripathy, and B. Mishra, Universe, 8(12), 636 (2022).

V.R. Patil, J.L. Pawde, and R.V. Mapari, IJIERT, 9, 4 (2022).

D.D. Pawar, D.K. Raut, and W.D. Patil, Pramana J. Phys. 96, 133 (2022).

S.N. Bayskar, D.D. Pawar, and A.G. Deshmukh, Rom. Journ. Phys. 54, 763 (2009). 54 7-8.html

D.D. Pawar, and R.V. Mapari, J. Dyn. Systems and Geom. Theories, 20(1), 115-136 (2022).

B. Saha, H. Amirhashchi, and A. Pradhan, Astrophys. Space Sci. 342, 257 (2012).

V.R. Chirde, and S.H. Shekh, The African Rev. Phys. 9, 0050 (2014).

J. Satish, and R. Venkateswarlu, Bulg. J. Phys. 46, 67 (2019). 1 067-079.pdf

V.J. Dagwal, and D.D. Pawar, Mod. Phys. Lett. A, 35(04), 1950357 (2020).

S.P. Hatkar, P. Agre, and S.D. Katore, Ann. Appl. Sci. 1, 659 (2022).

A. Raychaudhuri, Phys. Rev. 98, 1123 (1955).

S. Nojiri, and S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007).

N.W. Halverson, E.M. Leitch, and Pryke et. al., Astrophys. J. 568, 38 (2002).

J. Ehlers, Int. J. Mod. Phys. D, 15, 1573 (2006).

S. Mandal, P.K. Sahoo, and J.R.L. Santos, Physical Review D, 102(2), 024057 (2020).

P.K. Sahoo, S. Mandal, and S. Arora, Astron. Nachr. 342, 89 (2021).

S.H. Shekh, V.R. Chirde, and P.K. Sahoo, Commun. Theor. Phys. 72, 085402 (2020).

How to Cite
Patil, V., Pawde, J., Mapari, R., & Bolke, P. (2023). Energy Conditions with Interacting Field in f(R) Gravity. East European Journal of Physics, (3), 62-74.

Most read articles by the same author(s)