Energy Conditions with Interacting Field in f(R) Gravity

  • Vasudeo Patil Department of Mathematics, Arts, Science and Commerce College, Chikhaldara, Dist. Amravati (MS), India https://orcid.org/0000-0002-0442-3962
  • Jeevan Pawde Arts, Commerce and Science College, Chikhaldara, Dist. Amravati (MS), India-444807 https://orcid.org/0000-0001-8068-6265
  • Rahul Mapari Department of Mathematics, Government Vidarbha Institute of Science & Humanities, Amravati (MS), India-444604 https://orcid.org/0000-0002-5724-9734
  • Pravin Bolke Department of Mathematics, Prof. Ram Meghe College of Eng. & Management, New Express Highway, Amravati (MS), India-444701 https://orcid.org/0000-0002-1212-5260
Keywords: FLRW cosmological model, f(R) gravity, Interacting field, Hubble’s law

Abstract

In the context of current scenario, it is crucial to look beyond Einstein’s theory, which opens the door to certain modified theories of gravity. So, present study is devoted to investigate the various energy conditions, particularly, strong energy condition (SEC), weak energy condition (WEC), null energy condition (NEC) and dominant energy condition (DEC) corresponding to different functional forms of f(R) gravity. We have studied for flat, isotropic and homogeneous FLRW cosmological model filled with interacting field i.e., perfect fluid is coupled with mass less scalar field for different models of modified f(R) gravity in which R is the Ricci scalar. We have observed, the accelerated expansion of the Universe which exact match with recent observational evidences.

Downloads

Download data is not yet available.

References

A.G. Riess, et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter, et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

C.L. Bennet, et al., Astrophys. J. Suppl. 148, 1 (2003). https://doi.org/10.1086/377253

A.G. Riess, et al., Astrophys. J. 607, 665 (2004). https://doi.org/10.1086/383612

D.J. Eisenstein, et al. Astrophys. J. 633, 560 (2005). https://doi.org/10.1103/RevModPhys.75.559

P. Astier, et al., Astron. Astrophys. 447, 31 (2006). https://doi.org/10.1051/0004-6361:20054185

T. Padmanabhan, Phys. Rept. 380, 235 (2003). https://doi.org/10.1016/S0370-1573

P.J.E. Peebles, and B. Ratra, Rev. Mod. Phys. 75, 559 (2003). https://doi.org/10.1103/RevModPhys.75.559

S. Nojiri, and S. Odintsov, Phys. Rev. D, 68, 123512 (2003). https://doi.org/10.1103/PhysRevD.68.123512

R. Femaro, and F. Fiorini, Phys. Rev. D, 75, 084031 (2007). https://doi.org/10.1103/PhysRevD.75.084031

S. Nojiri, S. Odinstov, and P. Tretyakov, Prog. Theor. Phys. Suppl. 172, 81 (2008). https://doi.org/10.1143/PTPS.172.81

T. Harko, F.S.N. Lobo, S. Nojiri, and S.D. Odintsov, Phys. Rev. D, 84, 024020 (2011). https://doi.org/10.1103/PhysRevD.84.024020

H.A. Buchadahl, Mon. Not. Roy. Astron. Soc. 150, 1 (1970). https://doi.org/10.1093/mnras/150.1.1

S. Nojiri, and S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007). https://doi.org/10.1142/S0219887807001928

T. Multamaki, and I. Vilja, Phys. Rev. D, 74, 064022 (2006). https://doi.org/10.1103/PhysRevD.74.064022

T. Multamaki, and I. Vilja, Phys. Rev. D, 76, 064021 (2007). https://doi.org/10.1103/PhysRevD.76.064021

M.F. Shamir, Astrophys. Space Sci, 330, 183 (2010). https://doi.org/10.1007/s10509-010-0371-5

M. Sharif, and H.R. Kausar, Phys. Lett. B, 697, 1 (2011). https://doi.org/10.1016/j.physletb.2011.01.027

M.F. Shamir, Int. J. Theor. Phys. 50, 637 (2011). https://doi.org/10.1007/s10773-010-0587-8

K.S. Adhav, Bulg. J. Phys. 39, 197 (2012). https://www.bjp-bg.com/papers/bjp2012 3 197-206.pdf

M.F. Shamir, and Z. Raza, Can. J. Phys. 93, 1 (2015). https://doi.org/10.1139/cjp-2014-0338

S.D. Katore, S.P. Hatkar, and R.J. Baxi, Found. of Phys. 46, 409 (2016). https://doi.org/10.1007/s10701-015-9970-x

S.R. Bhoyar, V.R. Chirde, and S.H. Shekh, Prespacetime J. 7(3), 456 (2016). https://prespacetime.com/index.php/pst/article/viewFile/915/907

M.V. Santhi, V.U.M. Rao and Y. Aditya, Can. J. Phys. 96, 1 (2017). https://doi.org/10.1139/cjp-2017-0256

A.V. Astashenok, S.D. Odintsov, and A. Cruz-Dombriz, Class. Quantum Grav. 34, 205008 (2017). https://doi.org/10.1088/1361-6382/aa8971

M.V. Santhi, Y. Sobhanbabu, and B.J.M. Raoz, J. Phys.: Conf. Ser. 1344, 012038 (2019). https://doi.org/1088/1742-6596/1344/1/012038

A.H. Hasmani, and A.M. Al-Haysah, Appl. Appl. Math, 14, 334 (2019). https://digitalcommons.pvamu.edu/cgi/viewcontent.cgi?article=1717andcontext=aam

S.D. Katore, and S.V. Gore, J. Astrophys. Astr. 41, 12 (2020). https://doi.org/10.1007/s12036-020-09632-z

A.M. Al-Haysah, and A.H. Hasmani, Heliyon, 7(9), e08063 (2021). https://doi.org/10.1016/j.heliyon.2021.e08063

V.U.M. Rao, M.V. Santhi, and Y. Aditya, Prespacetime J. 6(6), 531-539 (2015). https://prespacetime.com/index.php/pst/article/download/749/752

D.D. Pawar, V.J. Dagwal, and P.K. Agrawal, Malaya J. Mat. 4(1), 111 (2016). https://www.malayajournal.org/articles/MJM16 14.pdf

G.K. Goswami, A. Pradhan, M. Mishra, and A. Beesham, New Astronomy, 73, 101284 (2019). https://doi.org/10.1016/j.newast.2019.101284

S.V. Lohakare, F. Tello-Ortiz, S.K. Tripathy, and B. Mishra, Universe, 8(12), 636 (2022). https://doi.org/10.3390/universe8120636

V.R. Patil, J.L. Pawde, and R.V. Mapari, IJIERT, 9, 4 (2022). https://dx.doi.org/10.17605/OSF.IO/QABKV

D.D. Pawar, D.K. Raut, and W.D. Patil, Pramana J. Phys. 96, 133 (2022). https://doi.org/10.1007/s12043-022-02364-5

S.N. Bayskar, D.D. Pawar, and A.G. Deshmukh, Rom. Journ. Phys. 54, 763 (2009). http://www.nipne.ro/rjp/2009 54 7-8.html

D.D. Pawar, and R.V. Mapari, J. Dyn. Systems and Geom. Theories, 20(1), 115-136 (2022). https://doi.org/10.1080/1726037X.2022.2079268

B. Saha, H. Amirhashchi, and A. Pradhan, Astrophys. Space Sci. 342, 257 (2012). https://doi.org/10.1007/s10509-012-1155-x

V.R. Chirde, and S.H. Shekh, The African Rev. Phys. 9, 0050 (2014). http://lamp.ictp.it/index.php/aphysrev/article/view/971/393

J. Satish, and R. Venkateswarlu, Bulg. J. Phys. 46, 67 (2019). https://www.bjp-bg.com/papers/bjp2019 1 067-079.pdf

V.J. Dagwal, and D.D. Pawar, Mod. Phys. Lett. A, 35(04), 1950357 (2020). https://doi.org/10.1142/S0217732319503577

S.P. Hatkar, P. Agre, and S.D. Katore, Ann. Appl. Sci. 1, 659 (2022). https://doi.org/10.55085/aas.2022.659

A. Raychaudhuri, Phys. Rev. 98, 1123 (1955). https://doi.org/10.1103/PhysRev.98.1123

S. Nojiri, and S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007). https://doi.org/10.1142/S0219887807001928

N.W. Halverson, E.M. Leitch, and Pryke et. al., Astrophys. J. 568, 38 (2002). https://doi.org/10.1086/338879

J. Ehlers, Int. J. Mod. Phys. D, 15, 1573 (2006). https://doi.org/10.1142/S0218271806008966

S. Mandal, P.K. Sahoo, and J.R.L. Santos, Physical Review D, 102(2), 024057 (2020). https://doi.org/10.1103/PhysRevD.102.024057

P.K. Sahoo, S. Mandal, and S. Arora, Astron. Nachr. 342, 89 (2021). https://doi.org/10.1002/asna.202113886

S.H. Shekh, V.R. Chirde, and P.K. Sahoo, Commun. Theor. Phys. 72, 085402 (2020). https://doi.org/10.1088/1572-9494/ab95fd

Published
2023-09-04
Cited
How to Cite
Patil, V., Pawde, J., Mapari, R., & Bolke, P. (2023). Energy Conditions with Interacting Field in f(R) Gravity. East European Journal of Physics, (3), 62-74. https://doi.org/10.26565/2312-4334-2023-3-04

Most read articles by the same author(s)