FLRW Cosmology with Hybrid Scale Factor in f(R, Lm) Gravity
Abstract
In this paper, we aim to describe the cosmic late-time acceleration of the Universe in f(R,Lm) gravity framework proposed by Harko (2010) with the help of an equation of state for strange quark matter. To achieve this, we adopt a specific form of f(R,Lm) gravity as f(R,Lm) =R/2}+ Lnm, where n is arbitrary constants. Here we utilize a hybrid scale factor to resolve the modified field equations in the context of f(R,Lm) gravity for an isotropic and homogeneous Friedmann–Lemaître–Robertson–Walker (FLRW) metric in presence of strange quark matter (SQM). Also, we analyze the dynamics of energy density, pressure and the state finder parameters and explained the distinctions between our model and the current dark energy models in the presence of SQM. We observed a transition from an accelerating to a decelerating phase in the Universe, followed by a return to an accelerating phase at late times. Also, we analyzed the state finder diagnostic as well equation of state parameter and found that the model exhibited quintessence-like behavior. The conclusion drawn from our investigation was that the proposed f(R, Lm) cosmological model aligns well with recent observational studies and effectively describes the cosmic acceleration observed during late times.
Downloads
References
A.G. Riess et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499
S. Perlmutter et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221
S. Perlmutter et al., Astrophys. J. 483, 565 (1997). https://doi.org/10.1086/304265
P.M. Garnavich et al., Astrophys. J. 509, 74 (1998). https://doi.org/10.1086/306495
P.S. Letelier, Phys. Rev. D , 28, 2414 (1983). https://doi.org/10.1103/PhysRevD.28.2414
D.N. Spergel et al., ApJS, 148, 175-194 (2003). https://doi.org/10.1086/377226
D.N. Spergel et al., Astrophys. J. Suppl., 170, 377 (2007). https://doi.org/10.1086/513700
D.J. Eisenstein et al., Astrophys. J. 633, 560-576 (2005). https://doi.org/10.1086/466512
W.J. Percival, et al., Mon. Not. Roy. Astron. Soc. 381, 1053-1066 (2007). https://doi.org/10.1111/j.1365-2966.2007.12268.x
T. Koivisto, and D.F. Mota, Phys. Rev. D, 73, 083502 (2006). https://doi.org/10.1103/PhysRevD.73.083502
S.F. Daniel, Phys. Rev. D, 77, 103513 (2008). https://doi.org/10.1103/PhysRevD.77.103513
G. Hinshaw, et al., ApJS, 208, 19 (2013). https://doi.org/10.1088/0067-0049/208/2/19
S. Nojiri, and S.D. Odintsov, Phys. Rev. D, 68, 123512 (2003). https://doi.org/10.1103/PhysRevD.68.123512
S. Nojiri, et al., Phys. Lett. B, 657, 238-245 (2007). https://doi.org/10.1016/j.physletb.2007.10.027
S. Capozziello, V.F. Cardone, and A. Troisi, JCAP, 0608, 001 (2006). [CrossRef]
A. Borowiec, W. Godlowski, and M. Szydlowski, Int. J. Geom. Meth. Mod. Phys. 4, 183-196 (2007). https://doi.org/10.1142/S0219887807001898
C.F. Martins, et al., Phys. Rev. Lett. 98, 151301 (2007). https://doi.org/10.1111/j.1365-2966.2007.12273.x
C.G. Boehmer, T. Harko, and F.S.N. Lobo, Astropart.Phys. 29, 386-392 (2008). https://doi.org/10.1016/j.astropartphys.2008.04.003
T.P. Sotiriou, and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010). https://doi.org/10.1103/RevModPhys.82.451
T. Harko, and F.S.N. Lobo, Eur. Phys. J. C, 70, 373-379 (2010). https://doi.org/10.1140/epjc/s10052-010-1467-3
F.S.N. Lobo, and T. Harko, (2012). https://doi.org/10.48550/arXiv.1211.0426
J. Wang, and K. Liao, Class. Quantum Grav. 29, 215016 (2012). https://doi.org/10.48550/arXiv.1211.0426
R.V. Lobato, G.A. Carvalho, and C.A. Bertulani, Eur. Phys. J. C, 81, 1013 (2021). https://doi.org/10.1140/epjc/s10052-021-09785-3 [CrossRef]
L.V. Jaybhaye, R. Solanki, S. Mandal, and P.K. Sahoo, Phys. Lett. B, 831, 137148 (2022). https://doi.org/10.1016/j.physletb.2022.137148
A. Pradhan, D.C. Maurya, G.K. Goswami, and A. Beesham, International Journal of Geometric Methods in Modern Physics, 20(06), 2350105 (2022). https://doi.org/10.1142/S0219887823501050
N.S. Kavya, V. Venkatesha, S. Mandal, and P.K. Sahoo, Physics of the Dark Universe, 38, 101126 (2022). https://doi.org/10.1016/j.dark.2022.101126
B.S. Gon¸calves, P.H.R.S. Moraes, and B. Mishra, (2023) https://doi.org/10.48550/arXiv.2101.05918
L.V. Jaybhaye, et al., Universe, 9(4), 163 (2023). https://doi.org/10.3390/universe9040163
R. Solanki, et al., Chin. J. Phys. 85, 74 (2023). https://doi.org/10.1016/j.cjph.2023.06.005
V.M. Raut, Prespacetime J. 11(7), 608-616 (2020). https://prespacetime.com/index.php/pst/article/view/1740/1640
S.K. Tripathy, B. Mishra, M. Khlopov, and S. Ray, IJMPD, 30 (16), 2140005 (2021). https://doi.org/10.1142/S0218271821400058
A.Y. Shaikh, et al., New Astronomy, 80, 101420 (2020). https://doi.org/10.1016/j.newast.2020.101420
D.R.Manekar, S.R. Bhoyar, and H. Kumar, Sch. J. Phys. Math. Stat. 8(4), 82-87 (2021). https://doi.org/10.36347/sjpms.2021.v08i04.001
V.G. Mete, V.S. Deshmukh, D.V. Kapse, and V.S. Bawane, Prespacetime J. 14(3), 309-315 (2023). https://prespacetime.com/index.php/pst/issue/view/143
G.S. Khadekar, and R. Shelote, Int. J. Theor. Phys. 51, 1442–1447 (2012). https://doi.org/10.1007/s10773-011-1020-7
K.S. Adhav, A.S. Bansod, and S.L. Munde, Open Phys. 13, 90-95 (2015). https://doi.org/10.1515/phys-2015-0010
D.D. Pawar, S.P. Shahare, Y.S. Solanke, and V.J. Dagwal, Indian J. Phys. 95, 10 (2021). https://doi.org/10.1515/phys-2015-0010
V.R. Patil, J.L. Pawde, and R.V. Mapari, IJIERT, 9(4), 92-101 (2022). https://doi.org/10.17605/OSF.IO/QABKV
P.K. Agrawal, and D.D. Pawar, J. Astrophys. and Astronomy, 38(2), (2017). https://doi.org/10.1007/s12036-016-9420-y
A.Y. Shaikh, A.S. Shaikh, and K.S. Wankhade, Pramana J. Phys. 95(19), (2021). https://doi.org/10.1007/s12043-020-02047-z
P.K. Sahoo, and B. Mishra, Turkish J. Phys. 39(1), 43-53 (2015). https://doi.org/10.3906/fiz-1403-5
P.K. Sahoo, P. Sahoo, B.K. Bishi, and S. Ayg¨u, New Astronomy, 60(1), 80-87 (2018). https://doi.org/10.1016/j.newast.2017.10.010
A.Y. Shaikh, S.V. Gore, and S.D. Katore, Bulg. J. Phys. 49(4), 340–361 (2022). https://doi.org/10.55318/bgjp.2022.49.4.340
S.H. Shekh, and V.R. Chirde, Gen. Rel. and Grav. 51(87), 340–361 (2019). https://doi.org/10.1007/s10714-019-2565-7
V.R. Chirde, S.P. Hatkar, and S.D. Katore, Int. J. Mod. Phys. D, 29(8), 2050054 (2020). https://doi.org/10.1142/S0218271820500546
D.D. Pawar, R.V. Mapari, V.M. Raut, Bulg. J. Phys. 48, 225–235 (2021).
V.R. Patil, J.L. Pawde, R.V. Mapari, and P.A. Bolke, East Eur. J. Phys. 3, 62–74 (2023). https://doi.org/10.26565/2312-4334-2023-3-04
S. Jokweni, V. Singh, and A. Beesham, Phys. Sci. Forum, 7(12), (2023). https://doi.org/10.3390/ECU2023-14037
Planck Collaboration, Astronomy & Astrophys. 571 (A16) (2014). https://doi.org/10.1051/0004-6361/201321591
T. Harko, F.S.N. Lobo, J.P. Mimoso, and D. Pav´on, Eur. Phys. J. C, 75, 386 (2015). https://doi.org/10.1051/0004-6361/201321591
B. Mishra, S.K. Tripathy, and P.P. Ray, Eur. Phys. J. C, 75, 386 (2015). https://doi.org/10.1007/s10509-018-3313-2
S.K. Tripathy et al., Phys.Dark Univ.30, 100722 (2020). https://doi.org/10.1016/j.dark.2020.100722
B. Mishra, S.K. Tripathy, and S. Tarai, Mod. Phys. Lett. 33(9), 1850052 (2018). https://doi.org/10.1142/S0217732318500529
V. Sahni, et al., U. Alam, JETP Lett. 77(9), 201 (2003). https://doi.org/10.1134/1.1574831
D.D. Pawar, R.V. Mapari, and J.L. Pawde, Pramana J. Phys. 95(10), (2021). https://doi.org/10.1007/s12043-020-02058-w
P.P. Khade, Jordan J. Phys. 16(1), 51-63 (2023). https://doi.org/10.47011/16.1.5
D.D. Pawar, R.V. Mapari, and P.K. Agrawal, J. Astrophys. Astr. 40(13), (2019). https://doi.org/10.1007/s12036-019-9582-5
V.R. Patil, S.K. Waghmare, P.A. Bolke, Bull. Cal. Math. Soc. 115(2), 159-170 (2023).
J.S. Wath, and A.S. Nimkar, Bulgarian J. Phys. 50, 255-264 (2023). https://doi.org/10.55318/bgjp.2023.50.3.255
D.D. Pawar, and R.V. Mapari, Journal of Dynamical Systems and Geometric Theories, 20(1), 115-136 (2022). https://doi.org/10.1080/1726037X.2022.2079268
Copyright (c) 2023 Vasudeo Patil, Jeevan Pawde, Rahul Mapari, Sachin Waghmare
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).