Анiзотропна космологiчна модель iз SQM у f(R,Lm) гравiтацiї

  • Правін Болке Факультет математики, коледж iнженерiї та менеджменту iменi проф. Рама Меге, Баднера, Дист. Амраватi (MS), Iндiя https://orcid.org/0000-0002-1212-5260
  • Васудео Патіл Коледж факультету математики, мистецтв, науки та торгiвлi, Чикхалдара, округ Амраватi (MS), Iндiя https://orcid.org/0000-0002-0442-3962
  • Сачин Вагмаре Департамент математики, TGPCET, Нагпур (MS), Iндiя https://orcid.org/0000-0001-5316-0540
  • Неха Махаджан Коледж факультету математики, мистецтв, науки та торгiвлi, Чикхалдара, округ Амраватi (MS), Iндiя https://orcid.org/0009-0008-3929-5869
Ключові слова: космологiчна модель LRS типу Bianchi - I, f(R,Lm) гравiтацiя, дивна кваркова матерiя, космiчний час

Анотація

Локально обертально-симетрична модель Bianchi-I, заповнена дивною кварковою матерiєю (SQM), дослiджується в f(R, Lm) гравітації як нелінійний функціонал у формі f(R, Lm)=R/2 +Lαm , де α вiльний параметр моделi. Ми розглянули спеціальний закон змiни параметра Хаббла, запропонований Берманом (1983), а також використали степеневий зв’язок мiж масштабними факторами, щоб отримати точний розв’язок рiвняння поля, який вiдповiдає моделi Всесвiту. Ми також аналізуємо фiзичнi та геометричнi аспекти кiнематичної та динамiчної поведiнки Всесвiту. Крiм того, ми використовуємо параметри рiвняння стану (EoS) i параметри визначення стану як аналiтичнi iнструменти, щоб отримати уявлення про еволюцiю Всесвiту. Ми використовуємо модель ΛCDM як еталон для перевiрки результатiв. Розмiщуючи вiдхилення Всесвiту вiд моделi ΛCDM I водночас роблячи важливий внесок у дослiдження анiзотропної природи f(R, Lm) гравiтацiї в рамках космологiчної динамiки, стаття покращує наше розумiння нашої космiчної еволюцiї.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M Garnavich, R.L. Gilliland, et al., ”Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The astronomical journal, 116(3), 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, et al., ”Measurements of ω and λ from 42 high-redshift supernovae,” The Astrophysical Journal, 517(2), 565 (1999). https://doi.org/10.1086/307221

A.G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H.C. Ferguson, B. Mobasher, P. Challis, et al., ”Type ia supernova discoveries at z>1 from the hubble space telescope: Evidence for past deceleration and constraints on dark energy evolution,” The Astrophysical Journal, 607(2), 665 (2004). https://doi.org/10.1086/383612

D.J. Eisenstein, I. Zehavi, D.W. Hogg, R. Scoccimarro, M.R. Blanton, R.C. Nichol, R. Scranton, et al., ”Detection of the baryon acoustic peak in the large-scale correlation function of sdss luminous red galaxies,” The Astrophysical Journal, 633(2), 560 (2005). https://doi.org/10.1086/466512

W.J. Percival, B.A. Reid, D.J. Eisenstein, N.A. Bahcall, T. Budavari, J.A. Frieman, M. Fukugita, et al., ”Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample,” Monthly Notices of the Royal Astronomical Society, 401(4), 2148–2168 (2010). https://doi.org/10.1111/j.1365-2966.2009.15812.x

D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, M. Halpern, et al., ”First-year wilkinson microwave anisotropy probe (wmap)* observations: determination of cosmological parameters,” The Astrophysical Journal Supplement Series, 148(1), 175 2003. https://doi.org/10.1086/377226

T. Koivisto, and D. F Mota, ”Dark energy anisotropic stress and large scale structure formation,” Physical Review D, 73(8), 083502 (2006). https://doi.org/10.1103/PhysRevD.73.083502

S.F. Daniel, R.R. Caldwell, A. Cooray, and A. Melchiorri, ”Large scale structure as a probe of gravitational slip,” Physical Review D, 77(10), 103513 (2008). https://doi.org/10.1103/PhysRevD.77.103513

M. Colless, G. Dalton, S. Maddox, W. Sutherland, P. Norberg, S. Cole, J. Bland-Hawthorn, et al., ”The 2df galaxy redshift survey: spectra and redshifts,” Monthly Notices of the Royal Astronomical Society, 328(4), 1039–1063 (2001). https://doi.org/10.1046/j.1365-8711.2001.04902.x

C.L. Bennett, M. Bay, M. Halpern, G. Hinshaw, C. Jackson, N. Jarosik, A. Kogut, et al., ”The microwave anisotropy probe mission,” The Astrophysical Journal, 583(1), 1 (2003). https://doi.org/10.1086/345346

R.R. Caldwell, and M. Doran, ”Cosmic microwave background and supernova constraints on quintessence: concordance regions and target models,” Physical Review D, 69(10), 103517 (2004). https://doi.org/10.1103/PhysRevD.69.103517

B. Clegg, Dark matter and dark energy: the hidden 95 of the universe, (Icon Books, 2019).

T. Chiba, T. Okabe, and M. Yamaguchi, ”Kinetically driven quintessence,” Physical Review D, 62(2), 023511 (2000). https://doi.org/10.1103/PhysRevD.62.023511

C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhardt, ”Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration,” Physical Review Letters, 85(21), 4438 (2000). https://doi.org/10.1103/PhysRevLett.85.4438

C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhardt, ”Essentials of k-essence,” Physical Review D, 63(10), 103510 (2001). https://doi.org/10.1103/PhysRevD.63.103510

M.C. Bento, O. Bertolami, and A.A. Sen, ”Generalized chaplygin gas, accelerated expansion, and dark-energy matter unification,” Physical Review D, 66(4), 043507 (2002). https://doi.org/10.1103/PhysRevD.66.043507

A. Kamenshchik, U. Moschella, and V. Pasquier, ”An alternative to quintessence,” Physics Letters B, 511(2-4), 265–268 (2001). https://doi.org/10.1016/S0370-2693(01)00571-8

H.A. Buchdahl, ”Non-linear lagrangians and cosmological theory,” Monthly Notices of the Royal Astronomical Society, 150(1), 1–8 (1970). https://doi.org/10.1093/mnras/150.1.1

T. Harko, F.S.N. Lobo, S. Nojiri, and S.D. Odintsov, ”f(R,T) gravity,” Physical Review D, 84(2), 024020 (2011). https://doi.org/10.1103/PhysRevD.84.024020

B. Li, J. D Barrow, and D.F. Mota, ”Cosmology of modified gauss-bonnet gravity,” Physical Review D, 76(4), 044027 (2007). https://doi.org/10.1103/PhysRevD.76.044027

A. De Felice, and S. Tsujikawa, ”Construction of cosmologically viable f(G) gravity models,” Physics Letters B, 675(1), 1–8 (2009). https://doi.org/10.1016/j.physletb.2009.03.060

K. Bamba, M. Ilyas, M.Z. Bhatti, and Z. Yousaf, ”Energy conditions in modified f(G) gravity,” General Relativity and Gravitation, 49, 112 (2017). https://doi.org/10.1007/s10714-017-2276-x

A´ . De la Cruz-Dombriz, and D. Sa´ez-Go´mez, ”On the stability of the cosmological solutions in f(R,G) gravity,” Classical and Quantum Gravity, 29(24), 245014 (2012). https://doi.org/10.1088/0264-9381/29/24/245014

M. De Laurentis, M. Paolella, and S. Capozziello, ”Cosmological inflation in f(R,G) gravity,” Physical Review D, 91(8), 083531 (2015). https://doi.org/10.1103/PhysRevD.91.083531

E.V. Linder, ”Einstein’s other gravity and the acceleration of the universe,” Physical Review D, 81(12), 127301 (2010). https://doi.org/10.1103/PhysRevD.81.127301

K. Bamba, C.-Q. Geng, C.-C. Lee, and L.-W. Luo, ”Equation of state for dark energy in f(T) gravity,” Journal of Cosmology and Astroparticle Physics, 2011(01), 021 (2011). https://doi.org/10.1088/1475-7516/2011/01/021

B. Li, T.P. Sotiriou, and J.D. Barrow, ”Large-scale structure in f(T) gravity,” Physical Review D, 83(10), 104017 (2011). https://doi.org/10.1103/PhysRevD.83.104017

Y. Xu, G. Li, T. Harko, and S.-D. Liang, ”f(Q,T) gravity,” The European Physical Journal C, 79, 708 (2019). https://doi.org/10.1140/epjc/s10052-019-7207-4

T. Harko, and F.S.N. Lobo, ”f(R,Lm) gravity,” The European Physical Journal C, 70, 373–379 (2010). https://doi.org/10.1140/epjc/s10052-010-1467-3

O. Bertolami, C.G. Boehmer, T. Harko, and F.S.N. Lobo, ”Extra force in f(R) modified theories of gravity,” Physical Review D, 75(10), 104016 (2007). https://doi.org/10.1103/PhysRevD.75.104016

J. Wang and K. Liao, ”Energy conditions in f(R,Lm) gravity,” Classical and Quantum Gravity, 29(21), 215016 (2012). https://doi.org/10.1088/0264-9381/29/21/215016

Y.-B. Wu, Y.-Y. Zhao, Y.-Y. Jin, L.-L. Lin, J.-B. Lu, and X. Zhang, ”Constraints of energy conditions and dk instability criterion on f(R,Lm) gravity models,” Modern Physics Letters A, 29(22), 1450089 (2014). https://doi.org/10.1142/S0217732314500898

T. Harko, F.S.N. Lobo, and O. Minazzoli, ”Extended f(R,Lm) gravity with generalized scalar field and kinetic term dependences,” Physical Review D, 87(4), 047501 (2013). https://doi.org/10.1103/PhysRevD.87.047501

T. Harko, and M.J, Lake, ”Cosmic strings in f(R,Lm) gravity,” The European Physical Journal C-Particles and Fields, 75(2), 60 (2015). https://doi.org/10.1140/epjc/s10052-015-3287-y

L.V. Jaybhaye, R. Solanki, S. Mandal, and P.K. Sahoo, ”Cosmology in f(R,Lm) gravity,” Physics Letters B, 831, 137148 (2022). https://doi.org/10.1016/j.physletb.2022.137148

L.V. Jaybhaye, S. Mandal, and P.K. Sahoo, ”Constraints on energy conditions in f(R,Lm) gravity,” International Journal of Geometric Methods in Modern Physics, 19(04), 2250050 (2022). https://doi.org/10.1142/S0219887822500505

L.V. Jaybhaye, S. Bhattacharjee, and P.K. Sahoo, ”Baryogenesis in f(R,Lm) gravity,” Physics of the Dark Universe, 40, 101223 (2023). https://doi.org/10.1016/j.dark.2023.101223

N.S. Kavya, V. Venkatesha, S. Mandal, and P.K. Sahoo, ”Constraining anisotropic cosmological model in f(R,Lm) gravity,” Physics of the Dark Universe, 38, 101126 (2022). https://doi.org/10.1016/j.dark.2022.101126

D.C. Maurya, ”Accelerating scenarios of massive universe in f(R,Lm)-gravity,” New Astronomy, 100, 101974 (2023). https://doi.org/10.1016/j.newast.2022.101974

R. Solanki, Z. Hassan, and P.K. Sahoo, ”Wormhole solutions in f(R,Lm) gravity,” Chinese Journal of Physics, 85, 74–88 (2023). https://doi.org/10.1016/j.cjph.2023.06.005

A.K. Yadav, L.K. Sharma, B.K. Singh, and P.K. Sahoo, ”Existence of bulk viscous universe in f(R,T) gravity and confrontation with observational data,” New Astronomy, 78, 101382 (2020). https://doi.org/10.1016/j.newast.2020.101382

K.S. Wankhade, A.Y. Shaikh, and S.N. Khan, ”Interacting two fluid dark energy bianchi type-i radiating cosmological model in f(R) gravity,” Prespacetime Journal, 13(3), (2022).

[43] V.R. Patil, P.A. Bolke, S.K. Waghmare, and J.L. Pawade. Cosmological power law model and exponential model in f(R) gravity. Prespacetime Journal, 14(6), 2023. https://prespacetime.com/index.php/pst/article/view/1852/1734

V. Singh, and A. Beesham, ”LRS Bianchi I model with strange quark matter and Λ(t) in f(R,T) gravity,” New Astronomy, 89, 101634 (2021). https://doi.org/10.1016/j.newast.2021.101634

A. Pradhan, A. Dixit, and G. Varshney, ”LRS bianchi type-i cosmological models with periodic time varying deceleration parameter in f(R,T) gravity,” International Journal of Modern Physics A, 37(18), 2250121 (2022). https://doi.org/10.1142/S0217751X22501214

V.R. Patil, P.A. Bolke, S.K.Waghmare, and J.L. Pawde, ”Energy conditions and statefinder diagnostic of cosmological model with special law of hubble parameter in f(R,T) gravity,” East European Journal of Physics, (3), 53–61 (2023). https://doi.org/10.26565/2312-4334-2023-3-03

Y.S. Solanke, A.P. Kale, D.D. Pawar, and V.J. Dagwal, ”LRS bianchi type-i cosmological model in f(Q,T) theory of gravity with observational constraints,” International Journal of Geometric Methods in Modern Physics, 20(12), 2350212 (2023). https://doi.org/10.1142/S0219887823502122

T. Harko, F.S.N. Lobo, J.P. Mimoso, and D. Pav´on, ”Gravitational induced particle production through a nonminimal curvature–matter coupling,” The European Physical Journal C, 75, 386 (2015). https://doi.org/10.1140/epjc/s10052-015-3620-5

M.S. Berman, ”A special law of variation for Hubble’s parameter,” Nuovo Cimento B Serie, 74, 182–186 (1983). https://doi.org/10.1007/BF02721676

V. Sahni, T.D. Saini, A.A. Starobinsky, and U. Alam, ”Statefinder—a new geometrical diagnostic of dark energy,” Journal of Experimental and Theoretical Physics Letters, 77, 201–206 (2003). https://doi.org/10.1134/1.1574831

U. Alam, V. Sahni, T.D. Saini, and A.A. Starobinsky, ”Exploring the expanding universe and dark energy using the statefinder diagnostic,” Monthly Notices of the Royal Astronomical Society, 344(4), 1057–1074 (2003). https://doi.org/10.1046/j.1365-8711.2003.06871.x

P.K. Agrawal, and D.D. Pawar, ”Plane symmetric cosmological model with quark and strange quark matter in f(R,T) theory of gravity,” Journal of Astrophysics and Astronomy B, 38, 2 (2017). https://doi.org/10.1007/s12036-016-9420-y

S.-L. Cao, S. Li, H.-R. Yu, and T.-J. Zhang, ”Statefinder diagnostic and constraints on the palatini f(R) gravity theories,” Research in Astronomy and Astrophysics, 18(3), 026 (2018). https://doi.org/10.1088/1674-4527/18/3/26

G. Gadbail, S. Arora, and P.K. Sahoo, ”Power-law cosmology in Weyl-type f(Q,T) gravity,” The European Physical Journal Plus, 136(10), 1040 (2021). https://doi.org/10.1140/epjp/s13360-021-02048-w

Опубліковано
2024-09-02
Цитовано
Як цитувати
Болке, П., Патіл, В., Вагмаре, С., & Махаджан, Н. (2024). Анiзотропна космологiчна модель iз SQM у f(R,Lm) гравiтацiї. Східно-європейський фізичний журнал, (3), 45-55. https://doi.org/10.26565/2312-4334-2024-3-05