Optimization of The Influence of Temperature on The Electrical Distribution of Structures with Radial p-n Junction Structures
Abstract
In recent years, advances in optoelectronics and electronics have prioritized optimizing semiconductor device performance and reducing power consumption by modeling new semiconductor device geometries. One such innovative structure is the radial p-n junction structure. In this work, we present a concept that submicron three-dimensional simulations were conducted on radial p-n junction structures based on GaAs material to investigate the influence of temperature ranging from 250K to 500K with a step of 50K on the electrophysical distribution, such as space charge, electro-potential, and electric field, in radial p-n junction structures, as well as various forward voltages. In particular, we focus on the shell radius within the structure: 0.5 μm and 1 μm for the shell. The modeling results were compared with the results obtained from solving the theoretical Poisson equation in the cylindrical coordinate system.
Downloads
References
Sh. Qian, S. Misra, J. Lu, Z. Yu, L. Yu, J. Xu. J. Wang, et al., Appl. Phys. Lett. 107, 043902 (2015). https://doi.org/10.1063/1.4926991
E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, IEEE Trans. Electron Devices, 58(9), 2903 (2011). https://doi.org/10.1109/TED.2011.2159608
Z. Arefinia, A. Asgari, Solar Energy Materials and Solar Cells, 137, 146 (2015). https://doi.org/10.1016/j.solmat.2015.01.032
O.V. Pylypova, A.A. Evtukh, P.V. Parfenyuk, I.I. Ivanov, I.M. Korobchuk, O.O. Havryliuk, and O.Yu. Semchuk, Opto-Electronics Review, 27(2), 143 (2019). https://doi.org/10.1016/j.opelre.2019.05.003
R. Ragi, R.V.T. da Nobrega, U.R. Duarte, and M.A. Romero, IEEE Trans. Nanotechnol. 15(4), 627 (2016). https://doi.org/10.1109/TNANO.2016.2567323
R.D. Trevisoli, R.T. Doria, M. de Souza, S. Das, I. Ferain, and M.A. Pavanello, IEEE Trans. Electron Devices, 59(12), 3510 (2012). https://doi.org/10.1109/TED.2012.2219055
N.D. Akhavan, I. Ferain, P. Razavi, R. Yu, and J.-P. Colinge, Appl. Phys. Lett. 98(10), 103510 (2011). https://doi.org/10.1063/1.3559625
A.V. Babichev, H. Zhang, P. Lavenus, F.H. Julien, A.Y. Egorov, Y.T. Lin, and M. Tchernycheva, Applied Physics Letters, 103(20), 201103 (2013). https://doi.org/10.1063/1.4829756
D.H.K. Murthy, T. Xu, W.H. Chen, A.J. Houtepen, T.J. Savenije, L.D.A. Siebbeles, et al., Nanotechnology, 22(31), 315710 (2011). https://doi.org/10.1088/0957-4484/22/31/315710
B. Pal, K.J. Sarkar, and P. Banerji, Solar Energy Materials and Solar Cells, 204, 110217 (2020). https://doi.org/10.1016/j.solmat.2019.110217
I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, and L. Samuelson, IEEE Journal of Photovoltaics, 6(1), 185 (2016). https://doi.org/10.1109/JPHOTOV.2015.2484967
P. Dubey, B. Kaushik, and E. Simoen, IET Circuits, Devices & Systems, (2019). https://doi.org/10.1049/iet-cds.2018.5169
M.-D. Ko, T. Rim, K. Kim, M. Meyyappan, and C.-K. Baek, Scientific Reports, 5(1), 11646 (2015). https://doi.org/10.1038/srep11646
A.M. de Souza, D.R. Celino, R. Ragi, and M.A. Romero, Microelectronics J. 119, 105324 (2021). https://doi.org/10.1016/j.mejo.2021.105324
M.C. Putnam, S.W. Boettcher, M.D. Kelzenberg, D.B. Turner-Evans, J.M. Spurgeon, E.L. Warren, et al., Energy & Environmental Science, 3(8), 1037 (2010). https://doi.org/10.1039/C0EE00014K
S. Osono, Y. Uchiyama, M. Kitazoe, K. Saito, M. Hayama, A. Masuda, A. Izumi, et al., Thin Solid Films, 430, 165 (2003). https://doi.org/10.1016/S0040-6090(03)00100-7
R. Elbersen, R.M. Tiggelaar, A. Milbrat, G. Mul, H. Gardeniers, and J. Huskens, Advanced Energy Materials, 5(6), 1401745 (2014). https://doi.org/10.1002/aenm.201401745
A.A. Leonardi, M.J.L. Faro, and A. Irrera, A Review. Nanomaterials, 11(2), 383 (2021). https://doi.org/10.3390/nano11020383
A. Yesayan, F. Jazaeri, and J.-M. Sallese, IEEE Trans. Electron Devices, 63(3), 1368 (2016). https://doi.org/10.1109/TED.2016.2521359
Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, Scientific Reports, 5(1), 11532 (2015). https://doi.org/10.1038/srep11532
J.C. Shin, D. Chanda, W. Chern, K.J. Yu, J.A. Rogers, and X. Li, IEEE Journal of Photovoltaics, 2(2), 129 (2012). https://doi.org/10.1109/JPHOTOV.2011.2180894
D. Choi, and K. Seo, Advanced Energy Materials, 11(5), 2003707 (2021). https://doi.org/10.1002/aenm.202003707
M. Shahram, T. Iman, and N.R. Mahdiyar, Optical and Quantum Electronics, 54(2), 115 (2022). https://doi.org/10.1007/s11082-021-03499-2
Bryan Melanson, M. Hartensveld, C. Liu, and J. Zhang, AIP Advances, 11(9), 095005 (2021). https://doi.org/10.1063/5.0061381
Y. Xiao, B. Zhang, H. Lou, L. Zhang, and X. Lin, IEEE Trans. Electron Devices, 63(5), 2176 (2016). https://doi.org/10.1109/TED.2016.2535247
B. Liu, J. Wang, Z. Li, Z. Sun, C. Li, J.-M. Seo, J. Li, et al., Nano Energy, 126, 109611 (2024). https://doi.org/10.1016/j.nanoen.2024.109611
R.K. Patnaik, and D.P. Pattnaik, in: 2016 International Conference on Signal Processing, Communication, Power and Embedded Systems (SCOPES), (Paralakhemundi, India, 2016). https://doi.org/10.1109/SCOPES.2016.7955628
A.C.E. Chia, and R.R. LaPierre, J. Appl. Phys. 112, 063705 (2012). https://doi.org/10.1063/1.4752873
S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, Third Edition, (John Wiley & Sons, Inc., 2007).
G.E. Cirlin, V.G. Dubrovskii, I.P. Soshnikov, N.V. Sibirev, Y.B. Samsonenko, A.D. Bouravleuv, J.C. Harmand, et al., Phys. Status Solidi (RRL), 3, 112 (2009). https://doi.org/10.1002/pssr.200903057
T.J. Kempa, R.W. Day, S.-K. Kim, H.-G. Park, and C.M. Lieber, Energy Environ. Sci. 6(3), 719 (2013). https://doi.org/10.1039/c3ee24182c
M.I. Khan, I.K.M.R. Rahman, and Q.D.M. Khosru, IEEE Trans. Electron Devices, 67(9), 3568 (2020). https://doi.org/10.1109/TED.2020.3011645
D.R. Bachman, S.E. Park, S. Thaveepunsan, J.S. Fitzsimmons, K.-N. An, and S.W. O’Driscoll, Journal of Orthopaedic Trauma, 1 (2018). https://doi.org/10.1097/BOT.0000000000001278
Citations
OPTIMIZING THE INFLUENCE OF DOPING AND TEMPERATURE ON THE ELECTROPHYSICAL FEATURES OF P-N AND P-I-N JUNCTION STRUCTURES
Abdullayev J.SH. & Sapaev I.B. (2024) Eurasian Physical Technical Journal
Crossref
Modeling and Theoretical Study of p-n Heterojunctions Based on CdTe/Si: Band Alignment, Carrier Transport, and Temperature-Dependent Electrophysical Properties
Sadullaev Sadula O., Sapaev Ibrokhim B. & Abdikarimov Khidoyat E. (2025) East European Journal of Physics
Crossref
Mathematical Modeling of Incomplete Ionization in Radial p-Si/n-GaAs Heterojunctions: Temperature and Doping Effects
Abdullayev Jo‘shqin Shakirovich, Sapaev Ibroxim Bayramdurdiyevich, Abdullayev Jonibek Shakirovich, Juraev Davron Aslonqulovich, Jalalov Mahir Jalal & Elsayed Ebrahim E. (2025) Journal of Electronic Materials
Crossref
Impacts of Local Oxide Trapped Charge on Electrical and Capacitance Characteristics of SOI FinFet
Atamuratov Atabek, Karimov Ibroximjon, Foziljonov Mirzabahrom, Abdikarimov Azamat, Atamuratov Odilbek & Khalilloev Makhkam (2025) East European Journal of Physics
Crossref
Theoretical analysis of incomplete ionization on the electrical behavior of radial p-n junction structures
Abdullayev J. Sh., Sapaev I. B. & Juraev Kh. N. (2025) Low Temperature Physics
Crossref
Factors Influencing the Ideality Factor of Semiconductor p-n and p-i-n Junction Structures at Cryogenic Temperatures
Abdullayev Jo`shqin & Sapaev Ibrokhim B. (2024) East European Journal of Physics
Crossref
Temperature Response Curve of Silicon Diode Temperature Sensors
Istamov Damir B., Abdulkhayev Oybek A., Kuliyev Shukurullo M., Abdullayev Nuraddin , Ashirov Shamshidin A. & Yodgorova Dilbara M. (2025) East European Journal of Physics
Crossref
Bandgap-Engineered pSi/n-CdₓS₁₋ₓ Heterojunctions: Effect of Composition on Optoelectronic Behavior
Sapaev Ibrokhim B., Razzokov Jamoliddin I., Abdullayev Jo‘shqin Sh., Qalandarova Dildora A. & Ibragimova Madinabonu Sh. (2025) East European Journal of Physics
Crossref
Copyright (c) 2024 Jo‘shqin Sh. Abdullayev, Ibrokhim B. Sapaev

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



