Analytic Analysis of the Features of GaAs/Si Radial Heterojunctions: Influence of Temperature and Concentration

  • Jo`shqin Sh. Abdullayev National Research University TIIAME, Department of Physics and Chemistry, Tashkent, Uzbekistan https://orcid.org/0000-0001-6110-6616
  • Ibrokhim B. Sapaev National Research University TIIAME, Department of Physics and Chemistry, Tashkent, Uzbekistan; Western Caspian University, Baku, Azerbaijan https://orcid.org/0000-0003-2365-1554
Keywords: Radial p-n junction, Light trap, External factors, Volt-farad, Heterostructures, Radial heterojunction (RHJ), Band gap narrowing (BGN), Cryogenic temperatures

Abstract

In this article, we analytically study the electrophysical features of the p-Si/n-GaAs radial heterojunction (RHJ) over a temperature range of 50 K to 500 K, in increments of 50 K while considering various doping concentrations. The analysis encompasses band gap narrowing (BGN), the differences in the band gap between GaAs and Si as a function of temperature, and the built-in potential relative to temperature. In particular, we focus on core p-Si with a radius of 0.5 μm and shell n-GaAs with a radius of 1 μm within the structure. Our findings indicate that the thickness of the depletion region in the p-Si/n-GaAs (RHJ) increases with rising temperature. The band gap difference between GaAs and Si is 0.31 eV at 300 K in our model, which is in good agreement with the experimental results. Additionally, the conduction band offset ∆EC=0.04 eV and the valence band offset ∆EV=0.27eV were calculated at 300 K. When the doping concentration changes from 2∙1015 to 2∙1018 band gap narrowing (BGN) decreases by 2 meV. Additionally, the built-in potential of the p-Si/n-GaAs (RHJ) decreases by 76 mV with increasing temperature.

Downloads

References

R. Elbersen, R.M. Tiggelaar, A. Milbrat, G. Mul, H. Gardeniers, and J. Huskens, Advanced Energy Materials, 5(6), 1401745 (2014). https://doi.org/10.1002/aenm.201401745.

E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, IEEE Trans. Electron Devices, 58(9), 2903 (2011). https://doi.org/10.1109/TED.2011.2159608.

Abdullayev, J. Sh., & Sapaev, I. B. (2024). Optimization of The Influence of Temperature on The Electrical Distribution of Structures with Radial p-n Junction Structures. East European Journal of Physics, (3), 344-349. https://doi.org/10.26565/2312-4334-2024-3-39

Abdullayev, J. Sh., Sapaev, I. B. (2024). Оптимизация влияния легирования и температуры на электрофизические характеристики p-n и p-i-n переходных структур. Eurasian Physical Technical Journal, 21(3(49), 21–28. (https://doi.org/10.31489/2024No3/21-28).

O.V. Pylypova, A.A. Evtukh, P.V. Parfenyuk, I.I. Ivanov, I.M. Korobchuk, O.O. Havryliuk, and O.Yu. Semchuk, Opto-Electronics Review, 27(2), 143 (2019). https://doi.org/10.1016/j.opelre.2019.05.003.

R. Ragi, R.V.T. da Nobrega, U.R. Duarte, and M.A. Romero, IEEE Trans. Nanotechnol. 15(4), 627 (2016). https://doi.org/10.1109/TNANO.2016.2567323.

Abdullayev, J., & Sapaev, I. B. (2024). Factors Influencing the Ideality Factor of Semiconductor p-n and p-i-n Junction Structures at Cryogenic Temperatures. East European Journal of Physics, (4), 329-333. https://doi.org/10.26565/2312-4334-2024-4-37

R.D. Trevisoli, R.T. Doria, M. de Souza, S. Das, I. Ferain, and M.A. Pavanello, IEEE Trans. Electron Devices, 59(12), 3510 (2012). https://doi.org/10.1109/TED.2012.2219055.

N.D. Akhavan, I. Ferain, P. Razavi, R. Yu, and J.-P. Colinge, Appl. Phys. Lett. 98(10), 103510 (2011). https://doi.org/10.1063/1.3559625.

A.V. Babichev, H. Zhang, P. Lavenus, F.H. Julien, A.Y. Egorov, Y.T. Lin, and M. Tchernycheva, Applied Physics Letters, 103(20), 201103 (2013). https://doi.org/10.1063/1.4829756.

D.H.K. Murthy, T. Xu, W.H. Chen, A.J. Houtepen, T.J. Savenije, L.D.A. Siebbeles, et al., Nanotechnology, 22(31), 315710 (2011). https://doi.org/10.1088/0957-4484/22/31/315710.

B. Pal, K.J. Sarkar, and P. Banerji, Solar Energy Materials and Solar Cells, 204, 110217 (2020). https://doi.org/10.1016/j.solmat.2019.110217.

Abdullayev, J. and Sapaev, I. 2024. Modeling and calibration of electrical features of p-n junctions based on Si and GaAs. Physical Sciences and Technology. 11, 3-4 (Dec. 2024), 39–48. https://doi.org/10.26577/phst2024v11i2b05.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, and L. Samuelson, IEEE Journal of Photovoltaics, 6(1), 185 (2016). https://doi.org/10.1109/JPHOTOV.2015.2484967.

S. C. Jain and D. J. Roulston, “A Simple Expression for Band Gap Narrowing (BGN) in Heavily Doped Si, Ge, GaAs and GexSi1 x Strained Layers,” Solid-State Electronics, vol.34, no. 5, pp. 453–465, 1991.

Published
2025-03-03
Cited
How to Cite
Abdullayev, J. S., & Sapaev, I. B. (2025). Analytic Analysis of the Features of GaAs/Si Radial Heterojunctions: Influence of Temperature and Concentration. East European Journal of Physics, (1), 204-210. https://doi.org/10.26565/2312-4334-2025-1-21