Quark-Antiquark Study with Inversely Quadratic Yukawa Potential Using the Nikiforov-Uvarov-Functional-Analysis Method

  • Etido P. Inyang Department of Physics, National Open University of Nigeria, Jabi-Abuja, Nigeria; Theoretical Physics Group, Department of Physics, University of Calabar, Calabar Nigeria https://orcid.org/0000-0002-5031-3297
  • Prince C. Iwuji Theoretical Physics Group, Department of Physics, University of Calabar, Calabar, Nigeria https://orcid.org/0000-0001-5715-9336
  • Joseph E. Ntibi Theoretical Physics Group, Department of Physics, University of Calabar, Calabar, Nigeria https://orcid.org/0000-0002-7908-2840
  • E. Omugbe Department of Physics, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria
  • Efiong A. Ibanga Department of Physics, National Open University of Nigeria, Jabi-Abuja, Nigeria
  • Eddy S. William Theoretical Physics Group, Department of Physics, University of Calabar, Calabar, Nigeria
Keywords: Schrödinger equation, Nikiforov-Uvarov-Functional-analysis method, inversely quadratic Yukawa potential, heavy mesons

Abstract

The solutions of the Schrödinger equation are obtained with an inversely quadratic Yukawa potential using the Nikiforov-Uvarov-Functional-analysis method. The energy spectrum and wave function were obtained in closed form. The energy equation was used to predict the masses of the heavy mesons such as charmonium (сĉ) and bottomonium (bḃ) for different quantum numbers. The results obtained agreed with other theoretical predictions and experimental data with a percentage error of 1.68 % and 0.50 % for charmonium (сĉ) and bottomonium (bḃ) respectively.

Downloads

Download data is not yet available.

References

H. Ciftci & H.F. Kisoglu, “Nonrelativistic-Arbitrary l-states of quarkonium through Asymptotic Iteration method”, Advances in High Energy Physics, 2018, 4549705 (2018), https://doi.org/10.1155/2018/4549705

H. Mutuk, “Mass Spectra and Decay constants of Heavy-light Mesons: A case study of QCD sum Rules and Quark model”, Advances in High Energy Physics, 2018, 8095653 (2018), https://doi.org/10.1155/2018/8095653

M. Allosh, Y. Mustafa, N.K. Ahmed, and A.S. Mustafa, “Ground and Excited-state mass spectra and properties of heavy-light mesons”, Few-Body Syst. 62, 26 (2021), https://doi.org/10.1007/s00601-021-01608-1

E. Omugbe, O.E. Osafile, I.B. Okon, E.P. Inyang, E.S. William, and A. Jahanshir, “Any L-state energy of the spinless Salpeter equation under the Cornell potential by the WKB Approximation method: An Application to mass spectra of mesons”, Few-Body Syst. 63, 6 (2022), https://doi.org/10.1007/s00601-021-01705-1

C.O. Edet, P.O. Amadi, M.C. Onyeaju, U.S. Okorie, R. Sever, G.J. Rampho, H.Y. Abdullah, I.H. Salih, and A.N. Ikot, “Thermal properties and magnetic susceptibility of Hellmann potential in Aharonov-Bohm (AB) Flux and magnetic fields at Zero and Finite temperature”, Journal of Low-Temperature Physics, 202, 83 (2021), https://doi.org/10.1007/s10909-020-02533-z

E. Omugbe, “Non-relativistic eigensolutions of molecular and heavy quarkonia interacting potentials via the Nikiforov-Uvarov method”, Canadian Journal of Physics, 98, 1125 (2020), https://doi.org/10.1139/cjp-2020-0039

E.S. William, E.P. Inyang, I.O. Akpan, J.A. Obu, A.N. Nwachukwu, and E.P. Inyang, “Ro-vibrational energies and expectation values of selected diatomic molecules via Varshni plus modified Kratzer potential model”, Indian Journal of Physics, (2022). https://doi.org/10.1007/s12648-0222-02308-0

M. Abu-Shady, T.A. Abdel-Karim, and Y. Ezz-Alarab, “Masses and thermodynamic properties of heavy mesons in the non-relativistic quark model using the Nikiforov-Uvarov method”, Journal of Egyptian Mathematical Society, 27, 14 (2019), https://doi.org/10.1186/s42787-019-0014-0

E.P. Inyang, E.S. William, E. Omugbe, E.P. Inyang, E.A. Ibanga, F. Ayedun, I.O. Akpan, and J.E. Ntibi, “Application of Eckart-Hellmann potential to study selected diatomic molecules using Nikiforov-Uvarov-Functional analysis method”, Revista Mexicana de Fisica, 68, 14 (2022), https://rmf.smf.mx/ojs/index.php/rmf/article/view/5931/6291

A.N. Ikot, U.S. Okorie, P.O. Amadi, C.O. Edet, G.J. Rampho, and R. Sever, “The Nikiforov-Uvarov –Functional Analysis (NUFA) Method: A new approach for solving exponential – Type potentials” Few-Body Systems 62, 9 (2021), https://doi.org/10.1007/s00601-021-021-01593-5

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E.S. William, and E.A. Ibanga, “Solutions of the Schrodinger equation with Hulthen –screened Kratzer potential: Application to diatomic molecules” East European Journal of Physics, 1, 11 (2022), https://doi.org/10.26565/2312-4334-2022-2-02

M. Abu-Shady, T.A. Abdel-Karim, and E.M. Khokha, “Exact solution of the N-dimensional Radial Schrödinger Equation via Laplace Transformation method with the Generalized Cornell potential”, Journal of Theoretical Physics, 45, 587 (2018).

E. Omugbe, O.E. Osafile, I.B. Okon, E.S. Eyube, E.P. Inyang, U.S. Okorie, A. Jahanshir, and C.A. Onate, “Non- relativistic bound state solutions with -deformed Kratzer-type potential using the super-symmetric WKB method: application to theoretic-information measures”, European Physical Journal D, 76, 72 (2022), https://doi.org/10.1140/epjd/s10053-022-00395-6

Z.Q. Ma, and B.W. Xu. “Quantum correction in exact quantization rules”, Europhysics Letters, 69, 685 (2005), https://doi.org/10.1209/epl/i2004-10418-8

S.H. Dong, D. Morales, and J. Garcia-Ravelo, “Exact quantization rule and its applications to physical potentials”, International Journal of Modern Physics 16, 198 (2007), https://doi.org/10.1142/S0218301307005661

W.C. Qiang, and S.H. Dong, “Proper quantization rule”, Europhysics Letters, 89, 10003 (2010), https://doi.org/10.1209/0295-5075/89/10003

F.A. Serrano, X.Y. Gu, and S.H. Dong, “Qiang-Dong proper quantization rule and its applications to exactly solvable quantum systems”, Journal of Mathematical Physics, 51, 082103 (2010), https://doi.org/10.1063/1.3466802

Y. Alhassid, F. Gursey, and F. Iachello, “Group theory approach to scattering”, Annals of Physics, 148, 346 (1983), https://doi.org/10.1016/0003-4916(83)90244-0

C.A. Onate, and M.C. Onyeaju, “Entropic system in the relativistic Klein-Gordon Particle “, Journal of Nigeria Society Physical Science, 3, 171 (2021), https://doi.org/10.46481/jnsps.2021.209

M. Abu-shady, C.O.Edet & A.N.Ikot, “Non-relativistic Quark model under external magnetic and Aharanov-Bohm (AB) fields in the presence of Temperature-Dependent confined Cornell potential” Canadian Journal of Physics (2021), https://doi.org/10.11139/cjp-2020-0101

R. Kumar, and F. Chand. “Asymptotic study to the N-dimensional Radial Schrodinger Equation for the quark-antiquark system”, Communication in Theoretical Physics, 59, 528 (2013), https://doi.org/10.1088/0253-6102/59/5/02

J.P. Prasanth, K. Sebastian, and V.M. Bannur, “Revisiting Cornell potential model of the Quark-Gluon plasma”, Physica A: Statistical Mechanics and its Applications, 558, 124921 (2020), https://doi.org/10.1016/j.physa.2020.124921

H.S. Chung, J. Lee, and D. Kang, “Cornel potential parameters for S-wave heavy quarkonia”, Journal of the Korean physical society, 52, 1151 (2008), https://doi.org/10.3938/jkps.52.1151

R. Kumar, R.M. Singh, S.B. Bhahardivaj, R. Rani, and F. Chand, “Analytical solutions to the Schrodinger equation for generalized Cornell potential and its application to diatomic molecules and heavy mesons”, Modern Physics Letter A, 37, 2250010 (2022), https://doi.org/10.1142/S0217732322500109

A. Vega, and J. Flores, “Heavy quarkonium properties from Cornell potential using the variational method and supersymmetric quantum mechanics”, Pramana Journal of Physics, 87, 73 (2016), https://doi.org/10.1007/s12043-016-1278-7

H. Mutuk, “Cornell Potential: A Neural Network Approach”, Advances in High Energy Physics, 22, 3105373 (2019), https://doi.org/10.1155/2019/3105373

H. Hassanabadi, M. Ghafourian, and S. Rahmani, “Study of the Heavy-Light mesons properties via the Variational method for Cornell interaction”, Few-Body Systems, 57, 249 (2016), https://doi.org/10.1007/s00601-015-1040-6

M. Abu-Shady, and S.Y.Ezz-Alarab, “Trigonometric Rosen–Morse Potential as a Quark–Antiquark Interaction Potential for Meson Properties in the Non-relativistic Quark Model Using EAIM”. Few-Body Systems, 60, 66 (2019), https://doi.org/10.1007/s00601-019-1531-y

M. Abu-shady, H.M. Mansour, and A.I. Ahmadov, “Dissociation of Quarkonium in Hot and Dense media in an Anisotropic plasma in the Non-relativistic Quark model”, Advances in High Energy Physics, 2019, 4785615 (2019), https://doi.org/10.1155/2019/4785615

E.P. Inyang, E.P. Inyang, J. E. Ntibi, E.E. Ibekwe, and E.S. William, “Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method”, Indian Journal of Physics, 7, (2021), https://doi.org/10.1007/s12648-020-01933-x

E.P. Inyang, E.P. Inyang, E.S. William, and E.E. Ibekwe, “Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework”, Jordan Journal of Physics, 14, 339 (2021), https://doi.org/10.47011/14.4.8

E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, and S.A. Ekong, “Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method, European Physical Journal Plus, 87, 11 (2021), https://doi.org/10.1140/epjp/s13360-021-01090-y

E.P. Inyang, I.O. Akpan, E.P. Inyang, and E.S. William, “Approximate solutions of the Schrödinger equation with Hulthen-Hellmann Potentials for a Quarkonium system”, Revista Mexicana de Física, 67, 490 (2021), https://doi.org/10.31349/RevMexFis.67.482

M. Abu-shady, and M. Rashdan, “Effect of a logarithmic mesonic potential on nucleon properties in the Coherent-pair approximation”, Physical Review C, 81, 015203 (2010), https://doi.org/10.1103/PhysRevC.81.015203

K.R. Purohit, P. Jakhad, and A.K. Rai, “Quarkonium spectroscopy of the linear plus modified Yukawa potential”, Physica Scripta, 97, 044002 (2022), https://doi.org/10.1088/1402-4896/ac5bc2

A. Al-Jamel, “Saturation in heavy quarkonia spectra with energy-dependent confining potential in N-dimensional space”, Modern Physics Letters, 33, 1850185 (2018), https://doi.org/10.1142/S0217732318501857

A. Al-Jamel, Heavy quarkonia properties from a hard-wall confinement potential model with conformal symmetry perturbing effects, Modern Physics Letters, 37, 1950307 (2019), https://doi.org/10.1142/S0217732319503073

S. Patel, P.C. Vinodkumar, and S. Bhatnagar,” Decay rates of charmonia within a quark-antiquark confining potential”, Chinese Physics C, 40, 053102 (2016), https://doi.org/10.1088/1674-1137/40/5/053102

V. Mateu, P.G. Ortega, D.R. Entem, and F. Fernandez, “Calibrating the naïve Cornell model with NRQCD”, The European Physical Journal C, 79, 323 (2019), https://doi.org/10.1140/epjc/s10052-019-6808-2

F. Brau, and C. Sernay, “The three-dimensional Fourier grid Hamiltonian method”, Journal of computational physics, 139, 136 (1998), https://doi.org/10.1006/jcph.1997.5866

A. Bhaghyesh, “Charmonium properties using the Discrete variable representation (DVR) method”, Advances in High Energy Physics, 2021, 9991152 (2021), https://doi.org//10.1155/2021/9991152

S. Jacobs, M.G. Olsson, and C. Suchyta, “Comparing the Schrodinger and Spinless Salpeter equations for heavy-quark bound states”, Physical Review D, 33, 3348 (1986), https://doi.org/10.1103/PHYSREVD.33.3338

B. Grinstein, “A modern introduction to quarkonium theory”, International Journal of Modern Physics, 15, 461 (2000), https://doi.org/10.1142/S0217751X00000227

W. Lucha, F. Schoberl, and D. Gromes, “Bound states of quarks”, Physics Reports, 200, 127 (1991), https://doi.org/10.1016/0370-1573(91)90001-3

M. Hamzavi, S.M. Ikhdair, and B.I. Ita, “Approximate spin and pseudospin solutions to the Dirac equation for the inversely quadratic Yukawa potential and Tensor interaction”, Physica Scripta, 85, 45 (2012), https://dx.doi.org/10.1088/0031-8949/85/04/045009

C.A. Onate, “Relativistic and Non-relativistic solutions of the inversely Quadratic Yukawa potential”, African Review Physics, 8, 46 (2013), http://eprints.lmu.edu.ng/1595/1/ONATE%2033.pdf

R. Horchani, H. Al-Aamri, N. Al-Kindi, A.N. Ikot, U.S. Okorie, G.J. Rampho, and H. Jelassi, “Energy spectra and magnetic properties of diatomic molecules in the presence of magnetic and AB fields with the inversely quadratic Yukawa potential”, The European Physical Journal D, 75, 36 (2021), https://doi.org/10.1140/epjd/s10053-021-00038-2

L. Hitler, B.I. Ita, N. Nzeata-Ibe, I.Joseph, O. Ivan, and T.O. Magu, ”WKB Solutions for Inversely Quadratic Yukawa plus Inversely Quadratic Hellmann Potential”, World Journal of Applied Physics, 7, 109 (2017), https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjap.20170204.13.pdf

C.O. Edet, and P.O. Okoi, “Any l-state solutions of the Schrodinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions”, Revista Mexicana De Física, 65, 333 (2019), https://doi.org/10.31349/RevMexFis.65.333

E.P. Inyang, E.S. William, and J.A .Obu, “Eigensolutions of the N-dimensional Schrödinger equation` interacting with Varshni-Hulthen potential model”, Revista Mexicana De Física, 67, 193 (2021), https://doi.org/10.31349/RevMexFis.67.193

R.L. Greene, and C.Aldrich, “Variational wave functions for a screened Coulomb potential”, Physical Review A, 14, 2363 (1976), https://doi.org/10.1103/PhysRevA.14.2363

C.S. Jia, T. Chen, and S. He, “Bound state solutions of the Klein–Gordon equation with the improved expression of the Manning–Rosen potential energy model”, Physics Letters A, 377, 682 (2013), https://doi.org/10.1016/j.physleta.2013.01.016

C.S. Jia, J.W. Dai, L.H. Zhang, J.Y. Liu, and X.L. Peng, “Relativistic energies for diatomic molecule nucleus motions with the spin symmetry”, Physics Letter A, 379, 137 (2015), https://doi.org/10.1016/j.physleta.2014.10.034

X.T. Hu, L.H. Zhang, and C.S. Jia, ”D-dimensional energies for Lithium dimer”, Journal of Molecular Spectroscopy, 297, 21 (2014), https://doi.org/10.1016/j.jms.2014.01.001

V. Kumar, R.M. Singh, S.B. Bhardwaj, and F. Chand, “Spectrum analysis of mesons using Nikiforov-Uvarov Functional Analysis method”, Materials Research Proceedings, 22, 7 (2022), https://doi.org/10.21741/9781644901878-2

E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, “Masses and thermodynamic properties of a Quarkonium system”, Canadian Journal Physics, 99, 982 (2021), https://doi.org/10.1139/cjp-2020-0578

M. Abu-Shady, “N-dimensional Schrödinger equation at finite temperature using the Nikiforov-Uvarov method”, Journal of Egyptian Mathematical Society, 25, 86 (2017), https://doi.org/10.1016/j.joems.2016.06.006

R. Olive, D.E. Groom, and T.G. Trippe, “Particle Data Group”, Chinese Physics C, 38, 60 (2014),

M. Tanabashi, C.D. Carone, T.G. Trippe, and C.G. Wohl, “Particle Data Group”, Physical Review D, 98, 546 (2018),

C.A. Onate, G.O. Egharevba, and D.T. Bankole, “Eigensolution to Morse potential for Scandium and Nitrogen monoiodides”, Journal of Nigeria Society Physical Science, 3, 282 (2021), https://doi.org/10.46481/jnsps.2021.407

S.K. Nikiforov, and V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988).

C. Tezcan, and R. Sever, “A general approach for the exact solution of the Schrodinger equation”, International Journal of Theoretical Physics, 48, 337 (2009), https://doi.org/10.1007/s10773-008-9806-y

S.H. Dong, Factorization Method in Quantum Mechanics, Fundamental Theories in Physics (Springer, 2007)

Published
2022-06-02
Cited
How to Cite
Inyang, E. P., Iwuji, P. C., Ntibi, J. E., Omugbe, E., Ibanga, E. A., & William, E. S. (2022). Quark-Antiquark Study with Inversely Quadratic Yukawa Potential Using the Nikiforov-Uvarov-Functional-Analysis Method. East European Journal of Physics, (2), 43-51. https://doi.org/10.26565/2312-4334-2022-2-05