Simulation of large-scale forest fire parameters

Keywords: large-scale forest fire, energy parameters, geometrical parameters, thermophysical parameters, fire tornado, thermal rise height, convection velocity, acoustic radiation

Abstract

Topicality. There is an urgent need to select the main energy, geometric and thermophysical parameters of forest fires, as well as to assess the main parameters of these fires, including unexplored fire tornadoes and wave processes caused by fires.

Purpose. To develop mathematical models of physical processes caused by large-scale forest fires, evaluate the main parameters of these fires, including unexplored fire tornadoes and wave processes caused by fires.

Methods. Analytical review of the research problem, theoretical and computational, mathematical modeling, systematic analysis of the set of physical effects.

Results. The results of the analysis of the parameters of forest fires and related physical processes caused by large-scale fires are presented. The main energy, geometric and thermophysical parameters of large-scale forest fires are proposed. These include: energy, power, duration, area of fires, as well as the length, intensity and speed of the combustion front, heat flux density, power flux density, torch height, heat and smoke rise height, convection speed, etc. Simple analytical physical and mathematical models of the main parameters of large-scale forest fires have been created. A model of a fiery tornado is proposed. The obtained ratios allow us to estimate the main parameters of fire tornadoes that accompany large-scale forest fires. These include radius, angular velocity, tangential velocity, maximum height and rate of rise of the heated formation. It is shown that, depending on the size of the vortex, the parameters of the fiery tornado vary widely. These relationships make it possible to analyze and evaluate the main parameters of wave processes generated by forest fires. Such parameters are energy, relative share of energy, range of periods of acoustic radiation, etc. The main parameters of forest fires and related physical processes are calculated. It is shown that depending on the area of the fire, these parameters vary widely.

Conclusions. Mathematical models of physical processes caused by large-scale forest fires have been developed, by means of which the parameters of the main effects have been calculated.

Downloads

Download data is not yet available.

Author Biographies

L. F. Chernogor, V. N. Karazin Kharkiv National University, 6, Svobody Sqr., 61022, Kharkiv, Ukraine

DSc (Physics and Mathematics), Professor, Head of the Department of Space Radio Physics

A. N. Nekos, V. N. Karazin Kharkiv National University, 6, Svobody Sqr., 61022, Kharkiv, Ukraine

DSc (Geography), Professor,  Head of the Department of Environmental Safety and Environmental Education                      

G. V. Titenko , V. N. Karazin Kharkiv National University, 6, Svobody Sqr., 61022, Kharkiv, Ukraine

PhD (Geography), Associate Professor, Head of Karazin Institute of Environmental Sciences

L. L. Chornohor , V. N. Karazin Kharkiv National University, 6, Svobody Sqr., 61022, Kharkiv, Ukraine

Student of Karazin Institute of Environmental Sciences

References

Buts, Yu. V. Scientific and methodological bases of relaxation of ecogeosystems under the technogenic loading of pyrogenic origin: Doctor’s thesis. Sumy: Sumy State University. Retrieved from https://essuir.sumdu.edu.ua/handle/123456789/76266 (In Ukrainian)

Chuvieco, E., Pettinari, M.L., Koutsias, N., Forkel, M., Hantson, S., & Turco, M. (2021). Human and climate drivers of global biomass burning variability. Science of the Total Environment, 779, 146361. https://doi.org/10.1016/j.scitotenv.2021.146361

Dowdy, A.J., Ye, H., Pepler, A., Thatcher, M., Osbrough, S.L., Evans, J.P., Di Virgilio, G., & McCar-thy, N. (2019). Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Scientific reports, 9(1), 10073, 1–11. https://doi.org/10.1038/s41598-019-46362-x

Rodríguez Trejo, D.A., Martínez Muñoz, P., & Martínez Lara, P.J. (2019). Fire effects on the trees of a tropical pine forest and a tropical dry forest at Villaflores, Chiapas, Mexico. Ciência Florestal, 29(3), 1033–1047. https://doi.org/10.5902/1980509833952

McLauchlan, K.K., Higuera, P.E., Miesel, J., Rogers, B.M., Schweitzer, J., Shuman, J.K., Tepley, A.J., Varner, J.M., Veblen, T.T., Adalsteinsson, S.A., Balch, J.K., Baker, P., Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M.L., Coen, J., Crandall, R., Daniels, L., Enright, N., Gross, W.S., Harvey, B.J., Hatten, J.A., Hermann, S., Hewitt, R.E., Kobziar, L.N., Landesmann, J.B., Loranty, M. M., Maezu-mi, S.Y., Mearns, L., Moritz, M., Myers, J.A., Pausas, J.G., Pellegrini, A.F.A., Platt, W.J., Roozeboom, J., Safford, H., Santos, F., Scheller, R.M., Sherriff, R.L., Smith, K.G., Smith, M.D., & Watts, A.C. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Jour-nal of Ecology, 108, (5), 2047–2069. https://doi.org/10.1111/1365-2745.13403

Coogan, S.C., Daniels, L.D., Boychuk, D., Burton, P.J., Flannigan, M.D., Gauthier, S., Kafka, V., Park, J.S., & Wotton, B.M. (2021). Fifty years of wildland fire science in Canada. Canadian Journal of Forest Research, 51(2), 283–302. https://doi.org/10.1139/cjfr-2020-0314

Hebert-Dufresne, L., Pellegrini, A.F.A., Bhat, U., & Redner, S. (2018). Edge fires drive the shape and stability of tropical forests. Ecology letters, (6), 794–803. https://doi.org/10.1111/ele.12942

Zhang, G., Wang, M., & Liu, K. (2019). Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. International Journal of Disaster Risk Science, 10(3), 386–403. https://doi.org/10.1007/s13753-019-00233-1

Holuša, J., Koreň, M., Berčák, R., Resnerová, K., Trombik, J., Vaněk, J., Szczygieł, R., & Chromek, I. (2021). A simple model indicates that there are sufficient water supply points for fighting forest fires in the Czech Republic. International journal of wildland fire, 30(6), 428–439. https://doi.org/10.1071/WF20103

Kelly, A.J., & Hodges, K.E. (2020). Post-fire salvage logging reduces snowshoe hare and red squirrel densities in early seral stages. Forest Ecology and Management, 473, 118272. https://doi.org/10.1016/j.foreco.2020.118272

Adámek, M., Jankovská, Z., Hadincová, V., Kula, E., & Wild, J. (2018). Drivers of forest fire occur-rence in the cultural landscape of Central Europe. Landscape Ecology, 33(11), 2031–2045. https://doi.org/10.1007/s10980-018-0712-2

Turner, M.G., Braziunas, K.H., Hansen, W.D., Hoecker, T.J., Rammer, W., Ratajczak, Z., Wester-ling, A.L., & Seidl, R. (2022). The magnitude, direction, and tempo of forest change in Greater Yel-lowstone in a warmer world with more fire. Ecological Monographs, 92(1), e01485. https://doi.org/10.1002/ecm.1485

Wilson, N., Bradstock, R., & Bedward, M. (2021). Detecting the effects of logging and wildfire on forest fuel structure using terrestrial laser scanning (TLS). Forest Ecology and Management, 488, 119037. https://doi.org/10.1016/j.foreco.2021.119037

Chornohor, L.F., Nekos, A.N., Titenko, G.V., & Chornohor, L.L. (2021). Ecological consequences of large-scale forest fires in Ukraine in spring – summer – autumn 2020. Bulletin of V. N. Karazin Kharkiv National University series « Ecology", (24), 79–90. https://doi.org/10.26565/1992-4259-2021-24-07

Chornohor, L.F., Nekos, A.N., Titenko, G.V., & Chornohor, L.L. (2021). Ecological consequences of forest burning in the northern hemisphere in 2020: results of modeling and quantitative calculations. Bulletin of V. N. Karazin Kharkiv National University series « Ecology", (25), 42–54. https://doi.org/10.26565/1992-4259-2021-24-04

Chernogor, L. F. (2012). Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. (in Russian)

Chernogor, L. F. (2017). Space, the Earth, Mankind: Contemporary Challenges. Kharkiv: V. N. Karazin Kharkiv National University Publ. (in Russian)

Snegirev, A. Yu., Marsden, J. A., Francis, J., & Makhviladze, G. M. (2004). Numerical studies and ex-perimental observations of whirling flames. International Journal of Heat and Mass Transfer, 47(12–13), 2523–2539. https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.002

Chernogor, L.F. (2018). Dynamics of the Convective Rise of Thermals in the Atmosphere. Izvestiya. Atmospheric and Oceanic Physics, 54(6), 626–634. http://dx.doi.org/10.1134/S000143381806004X

Chernogor, L.F. (2019). Dynamics of Convective Upwelling of Large-Scale Weakly Heated Atmos-pheric Aggregates. Izvestiya. Atmospheric and Oceanic Physics, 55(3), 251–256. https://doi.org/10.1134/S0001433819020038

Chernogor, L.F. (2021). Dynamics of the Thermal Uplifting in the Atmosphere under a Continuous Supply of Heat: Practical Application Examples. Physics of the atmosphere and geospace, 2(1), 5–16. https://doi.org/10.47774/phag.02.01.2021-1

The Scariest Picture You’ll See All Day: A ‘Firenado’ (2022) URL: https://time.com/96117/firenado/

Published
2022-05-30
How to Cite
Chernogor, L. F., Nekos, A. N., Titenko , G. V., & Chornohor , L. L. (2022). Simulation of large-scale forest fire parameters. Visnyk of V. N. Karazin Kharkiv National University. Series Еcоlogy, (26), 43-54. https://doi.org/10.26565/1992-4259-2022-26-04

Most read articles by the same author(s)