Вплив олігомерного та фібрилярного лізоциму на фізичні властивості модельних мембран

  • A. P. Kastorna Харківський національний університет імені В.Н. Каразіна
  • V. M. Trusova Харківський національний університет імені В.Н. Каразіна
  • G. P. Gorbenko V.N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61022
Ключові слова: амілоїдний лізоцим, олігомери, фібрили, пірен, Лаурдан, текучість мембран, дегідратація

Анотація

Характерною патологічною ознакою більш ніж 20 захворювань людини, включаючи хвороби
Альцгеймера і Паркінсона, діабет II типу, тощо, є відкладення в органах і тканинах нерозчинних
високоупорядкованих білкових агрегатів, так званих амілоїдних фібрил. Загальноприйнятим стає
той факт, що токсичність амілоїдів обумовлена їх взаємодією з клітинними мембранами. У даній
роботі досліджено вплив амілоїдних фібрил та їх попередників (олігомерних агрегатів) лізоциму
на структурні та фізичні властивості модельних мембран, що складалися з фосфатидилхоліну і
його суміші з холестерином. Для оцінки ступеня модифікації ліпідного бішару був використаний
метод флуоресцентної спектроскопії. Результати вимірювань ексимеризації пірену свідчать про те,
що амілоїдний білок знижує текучість мембран. При аналізі спектрів випромінювання Лаурдана
виявлено здатність агрегатів лізоциму викликати дегідратацію ліпідного бішару. Найбільш
виражені ефекти модифікації мембрани спостерігалися у випадку олігомерів лізоциму. Значно
слабший вплив патогенних білкових агрегатів на фізичні властивості везикул, що містили
холестерин, підтвердили гіпотезу про превентивну роль холестерину в захворюваннях, пов'язаних
з амілоїдами.

Завантаження

##plugins.generic.usageStats.noStats##

Біографії авторів

A. P. Kastorna, Харківський національний університет імені В.Н. Каразіна

пл. Свободи, 4, Харків, 61022

V. M. Trusova, Харківський національний університет імені В.Н. Каразіна

пл. Свободи, 4, Харків, 61022

Посилання

1. Stefani M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world // Biochim. Biophys. Acta. – 2004. – V. 1739. – P. 5-25.

2. Butterflied S.M., Laushel H.A. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems // Angew. Chem. Int. Ed. – 2010. – V. 49. – P. 5628-5654.

3. Kayed R., Head E., Thompson J.L., McIntire T.M, Milton S.C., Cotman C.W. Common structure of so-luble amyloid oligomers implies common mechanism of pathogenesis // Science. – 2003. – V. 300. – P. 486-489.

4. Glabe C.G. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease // Neuro-biol. Aging. – 2006. – V. 27. – P. 570-575.

5. Chiti F., Webster P., Taddei N., Clark A., Stefani M., Ramoni G., Dobson C. M. Designing conditions for in vitro formation of amyloid protofilaments and fibrils // Proc. Nat. Acad. Sci. U.S.A. – 1999. - V. 96. – P. 3590–3594.

6. Tycko R. Progress towards a molecular-level structural understanding of amyloid fibrils // Curr. Opin. Struct. Biol. – 2004. – V. 14. – P. 96-103.

7. Stefani M. Protein Folding and Misfolding on Surfaces // Int. J. Mol. Sci. – 2008. – V. 9. – P. 2515-2542.

8. Capone R., Garcia Quiroz F., Prangkio P., Saluja I., Sauer A.M., Bautista M.R., Turner R.S., Yang J., Mayer M. Amyloid-β-Induced Ion Flux in Artificial Lipid Bilayers and Neuronal Cells: Resolving a Controversy // Neurotox. Res. – 2009. – V. 16. – P. 1-13.

9. Kayed R., Sokolov Y., Edmonds B., McIntire T.M, Milton S.C., Hall J.E., Glabe C.G. Permeabilization of Lipid bilayers Is a Common conformation-dependent activity of Soluble amyloid oligomers in pro-tein misfolding diseases // J. Biol. Chem. – 2004. – V. 279, № 45. – P. 46363–46366.

10. Valincius G., Heinrich F., Budvytyte R. Soluble Amyloid b-Oligomers Affect Dielectric Membrane Properties by Bilayer Insertion and Domain Formation: Implications for Cell Toxicity // Biophys. J. – 2008. – V. 95. – P. 4845–4861.

11. Van Rooijen B.D., Claessens M.M.A.E., Subramaniam V. Membrane Permeabilization by Oligomeric α-Synuclein: In Search of the Mechanism // PLoS ONE. – 2010. – V. 5(12): e14292.

12. Cehhi C., Baglioni S., Fiorillo C., Pensalfini A., Liguri G., Nosi D., Rigacci S., Bucciantini M., Stefani M. Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates // J. Cell Sci. – 2005. – V. 118. – P. 3459-3470.

13. Ma X, Sha Y., Lin K., Nie S. The Effect of Fibrillar Aβ1-40 on Membrane Fluidity and Permeability // Protein Pept. Lett. – 2002. – V. 9, No 2. – P. 173-178.

14. Novitskaya V., Bocharova O.V., Bronstein I., Baskakov I.V. Amyloid fibrils of mammalian prion pro-tein are highly toxic to cultured cells and primary neurons // J. Biol. Chem. – 2006. – V. 281. – P. 13828–13836.

15. Gharibyan A.L., Zamotin V., Yanamandra K, Moskaleva O.S., Margulis B.A., Kostanyan I.A., Moro-zova-Roche L.A. Lysozyme amyloid oligomers and fibrils induce cellular death via different apop-totic/necrotic pathways // J. Mol. Biol. – 2007. – V.365. – P. 1337-13349.

16. Wang S. S.-S., Liu K.-N. Membrane dipole potential of interaction between amyloid protein and phos-pholipid membranes is dependent on protein aggregation state // J. Chin. Inst. Chem. Eng. – 2008. – V. 39. – P. 321-328.

17. Huang B., He J., Ren J., Yan X.-Y., Zeng C.-M. Cellular membrane disruption by amyloid fibrils in-volved intermolecular disulfide cross-linking // Biochemistry. – 2009. – V. 48. P. 5794–5800.

18. Jayasinghe S.A., Langen R. Membrane interaction of islet amyloid polypeptide // Biochim. Biophys. Acta. – 2007. – V. 1768. – P. 2002–2009.

19. Friedman R., Pellarin R., Caflisch A. Amyloid Aggregation on Lipid Bilayers and Its Impact on Mem-brane Permeability // J. Mol. Biol. – 2009. – V. 387 (2). – P. 407-415.

20. Stefani M. Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity // FEBS Journal. – 2010. – V. 277. – P. 4602–4613.

21. Lee Y.J., Savtchenko R., Ostapchenko V.G., Makarava N., Baskakov I.V. Molecular Structure of Amy-loid Fibrils Controls the Relationship between Fibrillar Size and Toxicity // PLoS ONE. – 2011. – V. 6(5): e20244.

22. Mossuto M.F., Dhulesia A., Devlin G., Frare E., Kumita J.R., Polverino de Laureto P., Dumoulin M., Fontana A., Dobson C.M., Salvatella X. The Non-Core Regions of Human Lysozyme Amyloid Fibrils Influence Cytotoxicity // J. Mol. Biol. – 2010. – V. 402(5-2). – P. 783–796.

23. Holley M., Eginton C., Schaefer D., Brown L. R. Characterization of amyloidogenesis of hen egg ly-sozyme in concentrated ethanol solution // Biochem. Biophys. Res. Commun. – 2008. – V. 373. – P. 164-168.

24. Parasassi T., Krasnowska E.K, Bagatolli L., Gratton E. Laurdan and Prodan as polarity-sensitive fluo-rescent membrane probes // J. Fluorescence.– 1998. – V. 8. – P. 365-373.

25. Lakowicz J. R. Principles of Fluorescent Spectroscopy, third ed., Springer, New York. 2006.

26. Novikov E.G., Visser N.V., Malevitskaia V.G., Borst W., van Hoek A., Visser A. Molecular dynamics of monopyrenyl lipids in liposomes from global analysis of time-resolved fluorescence of pyrene monomer and excimer emission // Langmuir. – 2000. – V. 16. – P. 8749-8754.

27. Lheurerx G.P., Fragata M., Monomeric and aggregated pyrene and 16-(1-pyrenyl)hexadecanoic acid in small, unilamellar phosphatidylcholine vesicles and ethanol-buffer solutions // J. Photochem. Photobiol. B: Biol. – 1989. – V. 3. – P. 53-63.

28. Kremer J.J., Pallitto M.M., Sklansky D.J., Murphy R.M. Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes // Biochemistry. – 2000. – V. 39 (33). – P. 10309-10318.

29. Widenbrant M.J.O., Rajadas J., Sutardja C., Fuller G.G. Lipid-Induced b-Amyloid Peptide Assemblage Fragmentation // Biophys. J. – 2006. – V. 91. – P. 4071–4080.

30. Askarova S., Yang X., Lee J. C.-M. Impacts of Membrane Biophysics in Alzheimer’s Disease: From Amyloid Precursor Protein Processing to Aβ Peptide-Induced Membrane Changes // Int. J. Alzheimer’s Dis. – 2011. – V. 2011. – ID 134971.

31. Muller W.E., Kirsch C., Eckert G.P. Membrane-disordering effects of b-amyloid peptides // Biochem. Soc. Trans. – 2001. V. 29. – P. 617-624.

32. Sponne I., Fifre A., Koziel V., Oster T., Oliver J.-L., Pilot T. Membrane cholesterol interferes with neu-ronal apoptosis induced by soluble oligomers but not fibrils of amyloid-β peptide // FASEB J. – 2004. V. 18. – P. 836-838.

33. Eckert G.P., Kirsch C., Muller W.E. Brain-membrane cholesterol in Alzheimer’s disease // Journal of Nutrition, Health and Aging. – 2003. – V. 7 (1). – P. 18–23.

34. Wolozin B. Cholesterol and the Biology of Alzheimer’s Disease // Neuron. – 2004. – V. 41. – P. 7–10.

35. Micelli S., Meleleo D., Picciarelli V., Gallucci E. Effect of Sterols on b-Amyloid Peptide AβP 1–40) Channel Formation and their Properties in Planar Lipid Membranes // Biophys. J. – 2004. – V. 86. – P. 2231–2237.
Цитовано
Як цитувати
Kastorna, A. P., Trusova, V. M., & Gorbenko, G. P. (1). Вплив олігомерного та фібрилярного лізоциму на фізичні властивості модельних мембран. Біофізичний вісник, 1(26). вилучено із https://periodicals.karazin.ua/biophysvisnyk/article/view/2709
Розділ
Біофізика клітини