The study of the peptide composition of the supernatants from mealworm Tenebrio molitor larvae and goldfish Carassius auratus during cold acclimation
Abstract
The molecular-mass distribution of peptides from supernatants, obtained from the tissues of larvae Tenebrio molitor and goldfish Carassius auratus during cold acclimation, has been determined by chromatography. The results showed that peptide spectrum of the supernatants from larvae T. molitor and C. auratus varied during cold acclimation. The supernatants from non-acclimated larvae of T. molitor and deacclimated fish possessed the highest number of peptide fractions. Furthermore, the cold-acclimated larvae of T. molitor had the peptide fractions of the low molecular weight (ca. 5.4×102 ÷22.6×102 Da), and non-acclimated insects had the peptides of the high molecular weight (ca. 46.8×102÷66×102 Da). Next, the organ-specific changes of the peptide composition of the goldfish during winter deacclimation have been revealed. Specifically, the low molecular weight peptides (ca. (14.1 ± 0.3)×102 and (6.75 ± 0.25)×102 Da), have been detected in the C. auratus muscles, and both the high (ca. (67.83 ± 0.21)×102 ( ca. 64.16 ± 0.26)×102 Da) and low (ca. (34.1 ± 1.0)×102 and (14.29 ± 0.15)×102 Da) molecular weight peptides have been detected in the liver. Quantitative and qualitative changes in the peptide spectra from supernatants of the T. molitor and C. auratus during cold acclimation could be one of the mechanisms of their natural adaptation to low temperatures.
Downloads
References
Biochemistry of fish antifreeze proteins / P. L. Davies, C. L. Hew // The FASEB J. – 1990. – V. 4, № 8. – P. 2460–2468.
Antifreeze glycopeptides and peptides in Antarctic fish species from the Weddell Sea and the Lazarev Sea / A. P. A. Wohrmann // Mar. Ecol. Prog. Ser. – 1996. – V. 130. – P. 47–59.
Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging / C. P. Garnham, A. Natarajan, A. J. Middleton [et al.] // Biochemistry. – 2010. – V. 49, № 42. – P. 9063–9071.
Functional validation of hydrophobic adaptation to physiological temperature in the small heat shock protein αA-crystallin / M. Posner, A. J. Kiss, J. Skiba [et al.] // PLOS ONE. – 2012. – V. 7, № 3. – e34438.
Environmental effects on antifreeze levels in larvae of the darkling beetle, Meracantha contracta / J. G. Duman // J. Exp. Zool. – 1977. – V. 201, № 2. – P. 333–337.
Factors involved in overwintering survival of the freeze tolerant beetle, Dendroides Canadensis / J. G. Duman // J. Comp. Physiol. – 1980. –V. 136, № 1. – P. 52–59.
Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect / S. P. Graether, M. J. Kuiper, S. M. Gagnе [et al.] // Nature. –2000. – V. 406, № 6793. – P. 325–328.
Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): roles of antifreeze proteins, polyols, dehydration and diapauses / V. A Bennett, T. Sformo, K. Walters [et al.] // J. Exp. Biol. – 2005. – V. 208, № 23. – P. 4467–4477.
Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth / Y. Celik, R. Drori, N. Pertaya-Braun [et al.] // PNAS. – 2013. – V. 110, № 4. – P. 1309–1314.
Demonstration of antifreeze protein activity in Antarctic lake bacteria / J. A. Gilbert, P. J. Hill, C. E. Dodd [et al.] // Microbiology. – 2004. – V. 150, № 1. – P. 171–180.
Antifreeze protein activity in Arctic cryoconite bacteria / P. Singh, Y. Hanada, S. M. Singh [et al.] // FEMS Microbiol Lett. – 2014. – V. 351, № 1. – P. 14–22.
Activity–stability relationships in extremophilic enzymes / S. D’Amico, J. C. Marx, C. Gerday [et al.] // J. Biol. Chem. – 2003. – V. 278, № 10. – P. 7891–7896.
Protein destabilization at low temperatures / F. Franks // Adv. Prot. Chem. – 1995. – V. 46. – P. 105–139.
The stability of proteins in extreme environments / R. Jaenicke, G. Böhm // Curr. Opin. Struct. Biol. – 1998. – V. 8, № 6. – P. 738–748.
Molecular characterization of cold adaptation of membrane proteins in the Vibrionaceae core–genome / T. Kahlke, S. Thorvaldsen // PLOS ONE. – 2012. – V. 7, № 12. – e51761.
Skoups R. Metody ochistki belkov / R. Skoups [per. s angl. prof. V. K. Antonova]. – M.: Mir, 1985. – 358 s.
Bidlingmejer B. Preparativnaya zhidkostnaya hromatografiya / B. Bidlingmejer. – M.: Mir, 1990. – 360 s.
Seasonal Adaptations in Arctic Insects / H.V. Danks // Integr. Comp. Biol. – 2004. – V. 44, № 2. – P. 85–94.
Cold adaptation in insects of Central Yakutia / N. G. Li, A. I. .Averenskii // Biophysics. – 2007. – V. 52, № 4. – P. 436–439.
Amino Acid Substitutions in Cold-Adapted Proteins from Halorubrum lacusprofundi, an Extremely Halophilic Microbe from Antarctica / S. DasSarma, M. D. Capes, R. Karan [et al.] // PLOS ONE. – 2013. – V. 8, № 3. – e58587.
Vplyv nyz’kyh temperatur na fenotypichni oznaky i bilok-syntezuyuchyj aparat holodostijkyh zhukiv Tenebrio molitor na riznyh stadiyah rozvytku: avtoref. dis. na zdobuttya nauk. stupenya kand. biol. nauk: spec. 03.00.19 «Kriobiologiya i kriomedycyna» / L. I. Relina. – Harkiv, 1999. – 16 s.
Strukturni ta metabolichni osoblyvosti tkanyn karasya sriblyastogo Carassius auratus v umovah temperaturnoi’ aklimacii’: avtoref. dis. na zdobuttya nauk. stupenya kand. biol. nauk: spec. 03.00.19 «Kriobiologiya» / O. G. Pogozhyh. – Harkiv, 2010. – 17 s.
Synthesis of an antifreeze glycoprotein analogue: efficient preparation of sequential glycopeptide polymers / T. Tsuda, S.-I.Nishimura // Chem. Commun. – 1996. – P. 2779–2780.
Type I 'antifreeze' proteins - Structure-activity studies and mechanisms of ice growth inhibition / M. M. Harding, L. G. Ward, A. D. J. Haymet // Eur. J. Biochem. – 1999. – V. 264. – P. 653–665.
‘Antifreeze’ glycoproteins from polar fish / M. M. Harding, P. I. Anderberg, A. D. Haymet // Eur. J. Biochem. – 2003. – V. 270, № 7. – P. 1381–1392.
Insect capa neuropeptides impact desiccation and cold tolerance / S. Terhzaz, N. M. Teetsb, P. Cabreroa [et al.] // PNAS. – 2015. – V. 112, № 9. – P. 2882–2887.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).