The study of the peptide composition of the supernatants from mealworm Tenebrio molitor larvae and goldfish Carassius auratus during cold acclimation

  • A. K. Gulevsky Институт проблем криобиологии и криомедицины НАН Украины, ул. Переяславская, 23, Харьков, 61016, Украина
  • D. V. Tretiak Институт проблем криобиологии и криомедицины НАН Украины, ул. Переяславская, 23, Харьков, 61016, Украина
Keywords: cold acclimation, chromatography, peptides

Abstract

The molecular-mass distribution of peptides from supernatants, obtained from the tissues of larvae Tenebrio molitor and goldfish Carassius auratus during cold acclimation, has been determined by chromatography. The results showed that peptide spectrum of the supernatants from larvae T. molitor and C. auratus varied during cold acclimation. The supernatants from non-acclimated larvae of T. molitor and deacclimated fish possessed the highest number of peptide fractions. Furthermore, the cold-acclimated larvae of T. molitor had the peptide fractions of the low molecular weight (ca. 5.4×102 ÷22.6×102 Da), and non-acclimated insects had the peptides of the high molecular weight (ca. 46.8×102÷66×102 Da). Next, the organ-specific changes of the peptide composition of the goldfish during winter deacclimation have been revealed. Specifically, the low molecular weight peptides (ca. (14.1 ± 0.3)×102 and (6.75 ± 0.25)×102 Da), have been detected in the C. auratus muscles, and both the high (ca. (67.83 ± 0.21)×102 ( ca. 64.16 ± 0.26)×102 Da) and low (ca. (34.1 ± 1.0)×102 and (14.29 ± 0.15)×102 Da) molecular weight peptides have been detected in the liver. Quantitative and qualitative changes in the peptide spectra from supernatants of the T. molitor and C. auratus during cold acclimation could be one of the mechanisms of their natural adaptation to low temperatures.

Downloads

Download data is not yet available.

References

Biochemistry of fish antifreeze proteins / P. L. Davies, C. L. Hew // The FASEB J. – 1990. – V. 4, № 8. – P. 2460–2468.

Antifreeze glycopeptides and peptides in Antarctic fish species from the Weddell Sea and the Lazarev Sea / A. P. A. Wohrmann // Mar. Ecol. Prog. Ser. – 1996. – V. 130. – P. 47–59.

Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging / C. P. Garnham, A. Natarajan, A. J. Middleton [et al.] // Biochemistry. – 2010. – V. 49, № 42. – P. 9063–9071.

Functional validation of hydrophobic adaptation to physiological temperature in the small heat shock protein αA-crystallin / M. Posner, A. J. Kiss, J. Skiba [et al.] // PLOS ONE. – 2012. – V. 7, № 3. – e34438.

Environmental effects on antifreeze levels in larvae of the darkling beetle, Meracantha contracta / J. G. Duman // J. Exp. Zool. – 1977. – V. 201, № 2. – P. 333–337.

Factors involved in overwintering survival of the freeze tolerant beetle, Dendroides Canadensis / J. G. Duman // J. Comp. Physiol. – 1980. –V. 136, № 1. – P. 52–59.

Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect / S. P. Graether, M. J. Kuiper, S. M. Gagnе [et al.] // Nature. –2000. – V. 406, № 6793. – P. 325–328.

Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): roles of antifreeze proteins, polyols, dehydration and diapauses / V. A Bennett, T. Sformo, K. Walters [et al.] // J. Exp. Biol. – 2005. – V. 208, № 23. – P. 4467–4477.

Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth / Y. Celik, R. Drori, N. Pertaya-Braun [et al.] // PNAS. – 2013. – V. 110, № 4. – P. 1309–1314.

Demonstration of antifreeze protein activity in Antarctic lake bacteria / J. A. Gilbert, P. J. Hill, C. E. Dodd [et al.] // Microbiology. – 2004. – V. 150, № 1. – P. 171–180.

Antifreeze protein activity in Arctic cryoconite bacteria / P. Singh, Y. Hanada, S. M. Singh [et al.] // FEMS Microbiol Lett. – 2014. – V. 351, № 1. – P. 14–22.

Activity–stability relationships in extremophilic enzymes / S. D’Amico, J. C. Marx, C. Gerday [et al.] // J. Biol. Chem. – 2003. – V. 278, № 10. – P. 7891–7896.

Protein destabilization at low temperatures / F. Franks // Adv. Prot. Chem. – 1995. – V. 46. – P. 105–139.

The stability of proteins in extreme environments / R. Jaenicke, G. Böhm // Curr. Opin. Struct. Biol. – 1998. – V. 8, № 6. – P. 738–748.

Molecular characterization of cold adaptation of membrane proteins in the Vibrionaceae core–genome / T. Kahlke, S. Thorvaldsen // PLOS ONE. – 2012. – V. 7, № 12. – e51761.

Skoups R. Metody ochistki belkov / R. Skoups [per. s angl. prof. V. K. Antonova]. – M.: Mir, 1985. – 358 s.

Bidlingmejer B. Preparativnaya zhidkostnaya hromatografiya / B. Bidlingmejer. – M.: Mir, 1990. – 360 s.

Seasonal Adaptations in Arctic Insects / H.V. Danks // Integr. Comp. Biol. – 2004. – V. 44, № 2. – P. 85–94.

Cold adaptation in insects of Central Yakutia / N. G. Li, A. I. .Averenskii // Biophysics. – 2007. – V. 52, № 4. – P. 436–439.

Amino Acid Substitutions in Cold-Adapted Proteins from Halorubrum lacusprofundi, an Extremely Halophilic Microbe from Antarctica / S. DasSarma, M. D. Capes, R. Karan [et al.] // PLOS ONE. – 2013. – V. 8, № 3. – e58587.

Vplyv nyz’kyh temperatur na fenotypichni oznaky i bilok-syntezuyuchyj aparat holodostijkyh zhukiv Tenebrio molitor na riznyh stadiyah rozvytku: avtoref. dis. na zdobuttya nauk. stupenya kand. biol. nauk: spec. 03.00.19 «Kriobiologiya i kriomedycyna» / L. I. Relina. – Harkiv, 1999. – 16 s.

Strukturni ta metabolichni osoblyvosti tkanyn karasya sriblyastogo Carassius auratus v umovah temperaturnoi’ aklimacii’: avtoref. dis. na zdobuttya nauk. stupenya kand. biol. nauk: spec. 03.00.19 «Kriobiologiya» / O. G. Pogozhyh. – Harkiv, 2010. – 17 s.

Synthesis of an antifreeze glycoprotein analogue: efficient preparation of sequential glycopeptide polymers / T. Tsuda, S.-I.Nishimura // Chem. Commun. – 1996. – P. 2779–2780.

Type I 'antifreeze' proteins - Structure-activity studies and mechanisms of ice growth inhibition / M. M. Harding, L. G. Ward, A. D. J. Haymet // Eur. J. Biochem. – 1999. – V. 264. – P. 653–665.

‘Antifreeze’ glycoproteins from polar fish / M. M. Harding, P. I. Anderberg, A. D. Haymet // Eur. J. Biochem. – 2003. – V. 270, № 7. – P. 1381–1392.

Insect capa neuropeptides impact desiccation and cold tolerance / S. Terhzaz, N. M. Teetsb, P. Cabreroa [et al.] // PNAS. – 2015. – V. 112, № 9. – P. 2882–2887.

Cited
How to Cite
Gulevsky, A. K., & Tretiak, D. V. (1). The study of the peptide composition of the supernatants from mealworm Tenebrio molitor larvae and goldfish Carassius auratus during cold acclimation. Biophysical Bulletin, 2(36), 27-36. https://doi.org/10.26565/2075-3810-2016-36-04
Section
Action of physical agents on biological objects