Intermolecular interactions of decamethoxinum and acetylsalicylic acid in systems of various complexity levels
Abstract
Intermolecular interactions between decamethoxinum (DEC) and acetylsalicylic acid (ASА) have been studied in the phospholipid-containing systems of escalating complexity levels. The host media for these substances were solvents, L-α-dipalmitoylphosphatidylcholine (DPPC) membranes, and samples of human erythrocytes. Peculiar effects caused by DEC-ASА interaction have been observed in each system using appropriate techniques: (a) DEC-ASА non-covalent complexes formation in DPPC-containing systems were revealed by mass spectrometry with electrospray ionization; (b) joint DEC-ASА action on DPPC model membranes led to increasing of membrane melting temperature Tm, whereas individual drugs caused pronounced Tm decreasing, which was demonstrated by differential scanning calorimetry; (c) deceleration of DEC-induced haemolysis of erythrocytes under joint DEC-ASА application was observed by optical microscopy.
Downloads
References
2. Biomembrane models and drug-biomembrane interaction studies: involvement in design and development / R. Pignatello, T. Musumeci, L. Basile [et al.] // J. Pharm. Bioallied Sci. – 2011. – Vol. 3. – P. 4-14.
3. Seydel J.K. Drug-Membrane Interactions: Analysis, Drug Distribution, Modeling. / J.K. Seydel, M. Wiese – Wiley-VCH Verlag GmbH & Co. KGaA, 002. – 2002. – 349 p.
4. Mavromoustacos T.M. The use of differential scanning calorimetry to study drug-membrane interactions / T.M. Mavromoustacos // Methods Mol Biol. – 2007. – Vol. 400. – P. 587-600.
5. Lucio M. Drug-membrane interactions: significance for medicinal chemistry / M. Lucio, J.L.F.C. Lima, S. Reis // Curr. Med. Chem. – 2010. – Vol. 17. – P. 1795-1809.
6. Le M.T. Biomimetic Model Membrane Systems Serve as Increasingly Valuable in Vitro Tools. In: Advances in Biomimetics (Ed. M. Cavrak) / M.T. Le, J.K. Litzenberger, E.J. Prenner – InTech, New-York. – 2011. – 532 pp
7. Canaves J.M. Verapamil prevents the effects of daunomycin on the thermotropic phase transition of model lipid bilayers / J.M. Canaves, J.A. Ferragut, J.M. Gonzalez-Ros // Biochem. J. – 1991. – Vol. 279. – P. 413-418.
8. Drug Interactions in Infectious Diseases (Ed. S.C. Piscitelli, K.A. Rodvold), 2nd edition). – Humana Press, Totowa, NJ. – 2005. – 692 pp.
9. Probing the combined effect of flunitrazepam and lidocaine on the stability and organization of bilayer lipid membranes. A differential scanning calorimetry and dynamic light scattering study / B. Caruso, J.M. Sánchez, D.A. García [et al.] // Cell Biochem Biophys. – 2012. – Vol. 66. – P. 461-475.
10. Probing of the combined effect of bisquaternary ammonium antimicrobial agents and acetylsalicylic acid on model phospholipid membranes: differential scanning calorimetry and mass spectrometry studies / N.A. Kasian, V.A. Pashynska, O.V. Vashchenko [et al.] // Mol. BioSyst. – 2014. – Vol. 10. – P. 3155-3162.
11. Investigations of the formation of noncovalent complexes between antimicrobial agent ethonium with membrane phospholipids by electrospray ionization mass spectrometry / V.A. Pashynska, M.V. Kosevich, A. Gomory, K.Vekey // Mass-spectrometria. – 2012. – Vol. 9, N 2. – P. 121-128.
12. Lyotropic mesophase of hydrated phospholipids as model medium for studies of antimicrobial agents activity / O. Vashchenko, V. Pashynska, M. Kosevich, [et al.] // Mol. Cryst. Liq. Cryst. – 2011. – V. 507. – P. 155-163.
13. Vievskij A.N. Cationic surfactants: new perspectives in medicine and biology. / A.N. Vievskij // Tenside Surfactants, Deterg. – 1997. – Vol. 34. – P. 18-21.
14. Denyer S.P. Mechanism of action of desinfectants / S.P. Denyer, G.S.A.B. Stewart // Int. Biodeter. Bioderg. – 1998. – Vol. 41. – P. 261-268.
15. Schreier S. Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects / S. Schreier, S.V.P. Malheiros, E. de Paula // Biochim. Biophys. Acta. – 2000. – Vol. 1508. – P. 210-234.
16. Gilbert P. Cationic antiseptics: diversity of action under a common epithet / P. Gilbert, L.E. Moor // J. Appl. Microbiol. – 2005. – Vol. 99. – P. 703-715.
17. Mechanistic investigation of the interaction between bisquaternary antimicrobial agents and phospholipids by liquid secondary ion mass spectrometry and differential scanning calorimetry / V.A. Pashinskaya, M.V. Kosevich, A. Gomory [et al.] // Rapid Commun. Mass Spectrom. – 2002. – Vol. 16. – P. 1706-1713.
18. Study of non-covalent complexes formation between the bisquaternary ammonium antimicrobial agent decamethoxinum and membrane phospholipids by electrospray ionization and collision-induced dissociation mass spectrometry / V.A. Pashynska, M.V. Kosevich, H. Van den Heuvel [et al.] // Vistnyk of V.N. Karazin Kharkiv National University. Biophysical Bulletin. – 2004. – Vol. 637, N 1-2. – P. 123-130.
19. Schrör K. Acetylsalicylic acid. – Wiley-Blackwell, Weinheim. – 2009. – 390 p.
20. Interaction of aspirin with DPPC in the lyotropic, DPPC-aspirin-H2O/D2O membrane / L. Panicker, V.K. Sharma, G. Datta [et al.] // Mol. Cryst. Liq. Cryst. – 1995. – Vol. 260. – P. 611-621.
21. Interaction of aspirin (acetylsalicylic acid) with lipid membranes / M.A. Barrett, S. Zheng, G. Roshankar [et al.] // PLoS ONE. – 2012. – Vol. 7. – e34357.
22. Lichtenberger L.M. Association of phosphatidylcholine and NSAIDS as a novel strategy to reduce gastrointestinal toxicity. / L.M. Lichtenberger, M. Barron, U. Marathi // Drugs of Today. – 2009. – Vol. 45. – P. 877-890.
23. Development and characterization of aspirin-phospholipid complex for improved drug deliver / A. Semalty, M. Semalty, D. Singh [et al.] // Int. Journ. Parhm. Sci. Nanotech. – 2010. – Vol. 3. – P. 940-947.
24. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes / R.J. Alsop, L. Toppozini, D. Marquardt [et al.] // Biochim. Biopphys. Acta. Biomembr. 2015 – Vol. 1848. – P. 805-812.
25. Are the electrospray mass spectra of proteins related to their aqueous solution chemistry? / R. Guevremont, K.W.M. Siu, J.C.Y. Le Blanc [et al.] // J. Am. Soc. Mass Spectrom. – 1992. – Vol. 3. – P. 216-224.
26. Mass spectrometric study and computer modeling of noncovalent interactions of cytosine with polyethylene glycol oligomers. / V.G. Zobnina, V.V. Chagovets, O.A. Boryak [et al.] // Mass-spektrometria. – 2014. – Vol. 16. – P. 97-106.
27. Effect of membranotropic agents on mono- and multilayers of dipalmitoylphosphatidylcholine. / L.N. Lisetski, O.V. Vashchenko, A.V. Tolmachev [et al.] // Eur. Biophys. J. – 2002. – Vol. 31. – P. 554-558.
28. Tristram-Nagle S. Lipid bilayers: thermodynamics, structure, fluctuations, and interactions / S. Tristram-Nagle, J. F. Nagle // Chem. Phys. Lipids. – 2004. – Vol. 127. – P. 3–14.
29. Digital holographic interference microscopy in the study of the 3D morphology and functionality of human blood erythrocytes / T.V. Tishko, V.P. Titar, D.N. Tishko [et al.] // Laser Physics. – 2008. – Vol. 18. – P. 486-490.
30. Tishko T.V. Erythrocytes three-dimensional morphology by digital holographic interference microscopy / T.V. Tishko, V.P. Titar, D.N. Tishko // Proc. of SPIE. – 2008. – V. 7006. – P. 70060O-70060O-9.
31. Holographic Microscopy of Phase Microscopic Objects. Theory and Practice / Tishko T.V., Tishko D.N., Titar V.P. London-Singapore: World Scientific. – 2011. – 97 p.
32. Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. (Ed. R. Cole). 2nd edition. – Hoboken, New Jersey,– 2010. – 1008 pp.
33. Loo J. A. Electrospray ionization mass spectrometry: a technology for studying non-covalent macromolecular complexes / J. A. Loo // Int. J. Mass Spectrom. – 2000. – Vol. 200, N 1–3. – P. 175-186.
34. Wyttenbach Th. Intermolecular interactions in biomolecular systems examined by mass spectrometry / Th. Wyttenbach, M. T. Bowers // Ann. Rev. Phys. Chem. – 2007. – Vol. 58. – P. 511–533.
35. McCullough B.J. Using electrospray ionisation mass spectrometry to study non-covalent interactions / B.J. McCullough, S.J. Gaskell // Comb. Chem. High Throughput Screen. – 2009. – Vol. 12, N 2. – P. 203–211.
36. Model mass spectrometric study of competitive interactions of antimicrobial bisquaternary ammonium drugs and acetylsalicylic acid with membrane phospholipids / V.A. Pashynska, M.V. Kosevich, A. Gomory [et al.] // Biopolymers and Cell. – 2013. – Vol. 29. – P. 157-162.
37. Fialkov Yu.Ya. Physical Chemistry of Non-Aqueous Solutions / Yu.Ya. Fialkov, A.N. Zhitomirskij, Yu. A. Tarasenko – Leningrad: Khimija. – 1973. – 376 p.
38. Ciana A. Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton / A. Ciana, C. Balduini, G. Minetti. // J. Biosci. – 2005. – Vol. 30, N 3. – P. 317–328.
39. Mohandas N. Red cell membrane: past, present, and future / N. Mohandas, P.G. Gallagher // Blood. – 2008. – Vol. 112, N 10. – P. 3939–3948.
40. Wong P. A basis of echinocytosis and stomatocytosis in the disc – sphere transformations of the erythrocyte / P. Wong // J. Theor. Biol. – 1999. – Vol. 6. – P. 343–361.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).