Nonlinear spectral correction of the pulse GPR signals

Keywords: non-destructive testing, remote sensing, pulsed signals

Abstract

Background: The problems of non-destructive testing of industrial structures and transport structures are relevant from the point of view of increasing the efficiency of their control systems and saving financial resources and materials. The relevance of scientific research in the field of remote sensing and methods for solving inverse problems is also associated with the prospects for the formulation and solution of biomedicine problems associated with computer technology.

Objectives of the work is to study the possibilities of virtual adjustment of the properties of probing and reflected signals to increase the reliability of processing results and increase the accuracy of restoration of the properties of objects when solving thickness measurement problems.

Materials and methods: The basis of the proposed approach is the correction of the amplitudes of pulse signals in order to increase the accuracy of the values ​​obtained as a result of processing by introducing a normalizing factor into the processing algorithm, the value of which would be a function obtained as a result of GPR calibration procedures. Another way to increase the reliability of the data processing procedure may be by computer correction of the waveform to approximate its shape to the shape of an idealized model pulse.

Results: As a result of theoretical analysis, methods and algorithms for implementing the procedure for improving the processing of sets of primary sensing data obtained using pulsed georadars were proposed.

Conclusion: The analysis of the methods for processing and adjusting the characteristics of pulsed ground-penetrating radar signals made it possible on the one hand to better understand the physical basis for the interaction of electromagnetic pulses with plane-layered media. On the other hand, practical methods of improving the quality control of various engineering and transport structures, as well as building structures, are proposed.

Downloads

Download data is not yet available.

Author Biography

D. O. Batrakov, V. N. Karazin Kharkiv National University

4, Svobody Square, Kharkiv, 61022, Ukraine

References

Lavrentev MM, Vasilev VG, Romanov VG. Mnogomernye obratnye zadachi dlia differentcialnykh uravnenii [Multidimensional inverse problems for differential equations]. Novosibirsk; 1969. 66 s. [in Russian].

Newton RG. Inversion of reflected data for layered media: a review of exact methods. Geophys. J. R. Astron. Soc. 1981;65:191-215.

Khruslov EYa. Shepelsky DG. Inverse scattering method in electromagnetic sounding theory. Inverse Problems. 1994;10(2):1-37.

Chu T.-H. Lee K.-Y. Wide-band microwave diffraction tomography under Born approximation. IEEE Trans. on Antennas & Propagat. 1989;37(4):515-519.

Arsenin VIa. Zadachi vychislitelnoi diagnostiki v meditcine [Problems of Computational Diagnostics in Medicine]. V kn.: Nekorrektnye zadachi estestvoznaniia.Moskva: MGU; 1987. 171-184 p. [in Russian].

Natterer F. Matematicheskie aspekty kompiuternoi tomografii [Mathematical aspects of computed tomography]. Moskva: Mir; 1990. 288 p. [in Russian].

Huang Lin, Qi Weizhi, Xu Jinyu, Zhao Yuan, Chi Zihui, Wu Dan, Rong Jian, Lai Dakun. Thermoacoustic tomography: A novel method for early breast tumor detection. X Acoust. Imaging Sens. 2015;1:36-47. Doi: 10.1515/phto-2015-0004

Akhouayri H, Bergounioux M, Da Silva A, Elbau P, Litman A, et al. Quantitative Thermoacoustic Tomography with microwaves sources. Journal of Inverse and Illposed Problems. 2016;1-21. Avaible at: https://hal.archives-ouvertes.fr/hal-01267412/document

Miaad Aliroteh, Hao Nan, Amin Arbabian. Microwave-induced Thermoacoustic tomography for subcutaneous vascular imaging. 2016 IEEE International Ultrasonics Symposium (IUS); 2016 Sept 18-21; Tours, France. p. 1-4. doi: 10.1109/ULTSYM.2016.7728643

Dmitriev VI. Obratnyie zadachi elektromagnitnyih metodov geofiziki [Inverse problems of electromagnetic methods of geophysics]. V knige: Nekorrektnyie zadachi estestvoznaniya. Moskva: Izdatelstvo MGU. 1987:54-76. [in Russian].

Yakovlev VA. Pryamyie i obratnyie zadachi v gidrooptike [Direct and inverse problems in hydrooptics]. SPb. RGGMU, 2004. 127 p.[in Russian].

Shin HJ, Narayanan MR, Asmuth MA, Rangaswamy M. Ultrawideband Noise Radar Tomography: Principles, Simulation, and Experimental Validation. International Journal of Microwave Science and Technology. 2016;2016(Article ID 5787895):21. doi:10.1155/2016/5787895

Burov VA, Glazkov AB. Prudnikova IP, Runyantsepa OD, Tagunov EY. Akusticheskaya difraktsionnaya topografiya granichnyih rasseivateley [Acoustic Diffraction Topography of Boundary Diffusers]. Vestnik Mosk. univ. Ser.Z: Fizika. Astronomiya. 1990;31(3):57-62. [in Russian].

Brovenko AV, Vertiy AA, Melezhik NP, Melezhik PN, Poedinchuk AE. Chislenno-analiticheskiy metod resheniya obratnyih zadach difraktsii voln na neodnorodnom sloe [Numerical-analytical method for solving inverse problems of wave diffraction on an inhomogeneous layer]. RadIofIzika ta elektronIka. 2015;6(20):13-25. [in Russian].

He S, Strom S. The electromagnetic scattering problem in the time domain for a dissipative slab and a point sourse using invariant imbedding. J. Math. Phys. 1991:32(12):3529-3539.

He S, Strom S. Time-domain wave splitting approach to transmission along a nonuniform LCRG line. Journal of Electromagnetic waves and Applications. 1992;6(8):995-1014.

He S, Strom S. The electromagnetic inverse problem in the time domain for a dissipative slab and a point sourse using invariant imbedding: Reconstruction of the permittivity and conductivity. Journal of Computational and Applied Math. 1992;42:137-155. (North-Holland).

Pochanin GP. Masalov SA, Ruban VP, Kholod PV, Batrakov DO, Batrakova AG, Urdzik SN, Pochanin OG. Advances in Short Range Distance and Permittivity Ground Penetrating Radar Measurements for Road Surface Surveying, in: Advanced Ultrawideband Radar: Signals, Targets and Applications. London:CRC Press - Taylor & Francis Group. 2016. p. 20-65. ISBN 9781466586574.

Batrakov DO. Obrabotka impulsnyih signalov pri tolschinometrii biologicheskih tkaney i nerazrushayuschem kontrole [Processing of impulse signals with thickness measurement of biological tissues and non-destructive testing]. Visnik Harkivskogo natsionalnogo universitetu imeni V.N.Karazina, seriya: «Radiofizika ta elektronika». – Harkov: HNU. 2016;25:48-52. [in Russian].

Batrakov DO, Antyufeeva MS, Antyufeev AV. Spektralnyiy analiz impulsnyih elektromagnitnyih poley v distantsionnom zondirovanii i biomeditsine [Spectral analysis of pulsed electromagnetic fields in remote sensing and biomedicine]. Visnyk Kharkivskoho natsionalnoho universytetu imeni V.N.Karazina, Seriia: «Radiofizyka ta elektronika». Kharkiv: KhNU. 2016;25:21-25. [in Russian].

Batrakov DO. Batrakova AG, Golovin DV, Kravchenko OV, Pochanin GP. Opredelenie tolschin sloev dorozhnoy odezhdyi metodom georadiolokatsionnogo zondirovaniya [Determination of thicknesses of pavement layers using georadar sensing]. Fizicheskie Osnovyi Priborostroeniya. 2014;3(2):46-57. [in Russian].

Batrakov DO, Beloshenko KS, Antyufeyeva MS, Batrakova AG, Urdzik SN. Comparative Study of Signal Processing of Two UWB GPR Antenna Units. Electronic Systems, Micro- and Nanosystem Technique, and IoT Electronic Technology Symposium; 2018 Oct 10-12; Kiev, Ukraine. p. 1-5.

Batrakov DO, Antyufeyeva MS, Batrakova AG, Antyufeyev AV. UWB Signal Processing for the Solving Inverse Scattering Problem of Plane-Layered Media. In Proceedings of the 2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS-2018); 2018. p. 140-143.

Batrakov DO, Antyufeyeva MS, Antyufeyev AV, Batrakova AG. GPR data processing for evaluation of the subsurface cracks in road pavements. 2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR); 2017; Pages: Edinbourg, Scotland; IEEE Conference Publications. p. 1-6. Available from: http://ieeexplore.ieee.org/document/7996072/

Pudovkin AP. Panasyuk YuN, Ivankov AA. Osnovyi teorii antenn: uchebnoe posobie [Antenna Theory Basics: A Tutorial]. Tambov: Izd-vo GOU VPO, TGTU. 2011. 92 s. [In Russian].

Gorobets NN, Ovsyannikova EE. Vliyanie razmerov i formyi izluchayuschego raskryiva na harakter prostranstvennogo raspredeleniya polya vblizi antennyi [The influence of the size and shape of the radiating aperture on the nature of the spatial distribution of the field near the antenna]. Visnyk Kharkivskoho natsionalnoho universytetu imeni V.N.Karazina, seriia: «Radiofizyka ta elektronika». Kharkov: KhNU. 2013;1094(23):51-59. [in Russian].

Citations

Application of georadars for detecting subsurface defects in layers of non-rigid road pavements
(2020) Visnyk of V.N. Karazin Kharkiv National University, series “Radio Physics and Electronics”
Crossref

Published
2018-12-28
Cited
How to Cite
Batrakov, D. O. (2018). Nonlinear spectral correction of the pulse GPR signals. Visnyk of V.N. Karazin Kharkiv National University, Series “Radio Physics and Electronics”, (29), 3-10. https://doi.org/10.26565/2311-0872-2018-29-01