Флуктуації геомагнітного поля, які супроводжували чуйські землетруси в вересні – жовтні 2003 р.

  • Y. Luo Харківський національний університет імені В. Н. Каразіна https://orcid.org/0000-0002-3376-5814
  • K. P. Garmash Харківський національний університет імені В. Н. Каразіна https://orcid.org/0000-0002-0844-5456
  • L. F. Chernogor Харківський національний університет імені В. Н. Каразіна https://orcid.org/0000-0001-5777-2392
  • S. M. Shulga Харківський національний університет імені В. Н. Каразіна https://orcid.org/0000-0003-0626-4405
Ключові слова: землетрус, геомагнітне поле, магнітометр-флюксметр, смугова фільтрація, системний спектральний аналіз, квазіперіодичні збурення, сейсмічні хвилі, акустико-гравітаційні хвилі

Анотація

Актуальність. У даний час актуальною проблемою є вивчення взаємодії підсистем в системі Земля – атмосфера – іоносфера – магнітосфера. Для виявлення прямих і зворотних, позитивних і негативних зв’язків між підсистемами використовуються джерела з великим енерговиділенням. У даній роботі в якості такого джерела розглядаються Чуйські землетруси, магнітуда яких змінювалася від 4.5 до 7.3.

Метою цієї роботи є опис результатів пошуку можливої реакції геомагнітного поля в діапазоні періодів 1 – 1000 с на Чуйські землетруси, які підготовлювалися або відбулися, у вересні – жовтні 2003 р.

Методи і методологія. Вимірювання виконані за допомогою магнітометра-флюксметра, розташованого в Магнітометричній обсерваторії ХНУ імені В. Н. Каразіна. Чутливість магнітометра складає 0.5 – 500 пТл для періодів 1 – 1000 с. Обробка результатів вимірювань здійснювалася в три етапи. Спочатку магнітометричні сигнали, зареєстровані у відносних одиницях, з урахуванням амплітудно-частотної характеристики магнітометра перетворювалися в сигнали, вимірювані в абсолютних одиницях. Далі здійснювалася смугова фільтрація в діапазонах періодів 1 – 10, 10 – 100 і 100 – 1000 с. Після цього проводився системний спектральний аналіз часових варіацій рівня H- та D-компонент геомагнітного поля.

Результати. За 43 та 163 хв до землетрусу з магнітудою 7.3 виявлено квазіперіодичні варіації геомагнітного поля, які могли бути магнітним передвісником землетрусу. Описано механізм такого передвісника. Після землетрусів з магнітудами 7.3, 6.7 і 7.0 виявлено квазіперіодичні варіації геомагнітного поля. Такі варіації могли бути викликані перенесенням збурень за допомогою сейсмічних хвиль, що мають швидкості від 1.9 до 5.3 км/с, а також за допомогою акустико-гравітаційних хвиль, які поширюються зі швидкістю від 320 до 670 м/с. 1 жовтня 2003 р. зміна характеру варіацій мала місце при часах запізнення від 0 до 5 хв. Якщо ці варіації пов’язані з землетрусами, переносником збурень могли виступати МГД хвилі.

Висновки. Установлено, що помірні землетруси здатні призводити до реєструємих збурень у геомагнітному полі на відстанях ~3500 км від епіцентру сейсмічного удару.

Завантаження

Дані завантаження ще не доступні.

Біографії авторів

Y. Luo, Харківський національний університет імені В. Н. Каразіна

Україна, 61022, Харків, пл. Свободи 4

K. P. Garmash, Харківський національний університет імені В. Н. Каразіна

Україна, 61022, Харків, пл. Свободи 4

L. F. Chernogor, Харківський національний університет імені В. Н. Каразіна

Україна, 61022, Харків, пл. Свободи 4

S. M. Shulga, Харківський національний університет імені В. Н. Каразіна

Україна, 61022, Харків, пл. Свободи 4

Посилання

Pudovkin MI, Raspopov OM, Kleimenova NG. Vozmushcheniya elektromagnitnogo polya Zemli Chast’ 2 [Disturbances of the Earth’s Electromagnetic Field, vol. 2]. Leningrad: LGU; 1976. 270 p.

Guglielmi AV. MGD-volny v okolozemnoi plazme [MHD-Waves in Near-Earth Plasma]. Moscow: Nauka; 1979. 139 p.

Nishida A. Geomagnitnyi diagnoz magnitosfery [Geomagnetic Diagnosis of the Magnetosphere]. Moscow: Mir, 1980. 299 p. [In Russian].

Guglielmi AV, Troitskaya VA. Geomagnitnye pul’satsii i diagnostika magnitosfery [Geomagnetic Pulsations and Diagnostics of the Magnetosphere]. Moscow: Nauka; 1983. 208 p.

Likhter YaI, Gul’el’mi AV, Erukhimov LM, Mikhailova GA. Volnovaya diagnostika prizemnoi plazmy [Wave Diagnostics of Surface Plasma]. Moscow: Nauka; 1988. 215 p.

Current research in Earth prediction. Rikitake T, editor. Dordrecht: D. Reidel Publishing; 1981. 510 p.

Gokhberg MB, Morgunov VA, Pokhotelov OA. Seismoelectromagnetic Phenomena [Seismo-elektromagnitnye yavleniya], Moscow: Nauka; 1988. 180 p. [In Russian]

Electromagnetic phenomena related to earthquake prediction. In: Hayakawa M, Fujinawa Y, editors. Tokyo: Terra Scientific Pub. Comp.; 1994. 677 p.

Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes. Hayakawa M, editor. Tokyo: Terra Scientific Pub. Comp.; 1999. 996 p.

Surkov VV. Elektromagnitnye effekty pri vzryvakh i zemletriaseniiakh [Electromagnetic effects caused by earthquakes and explosions]. Moscow: MEPhI; 2000. 448 p. [in Russian].

Seismoelectromagnetics: lithosphere – atmosphere – ionosphere coupling. In: Hayakawa M, Molchanov OA, editors. Tokyo: Terra Scientific Pub. Comp.; 2002. 477 p.

Sobolev GA., Ponomarev AV. Fizika zemletryasenii i predvestnikov [Physics of Earthquakes and Precursors]. Moscow: Nauka; 2003. 270 p.

Molchanov OA, Hayakawa M. Seismo-electromagnetics and related phenomena: history and latest results. Tokyo: Terra Scientific Pub. Comp.; 2008. 189 p.

Electromagnetic phenomena associated with earthquakes. Hayakawa M, editor. Trivandrum: Transwald Research Network; 2009. 279 p.

Earthquakes prediction studies: seismo electromagnetic. Hayakawa M, editor. Tokyo: Terra Scientific Pub. Comp.; 2013. 794 p.

Surkov V, Hayakawa M. Ultra and Extremely Low Frequency Electromagnetic Fields. Tokyo, Heidelberg, New York, Dordrecht, London: Springer; 2014. 486 p.

Chernogor LF. Geomagnitnye pulsatcii, soputstvovashie dvizheniiu solnechnogo terminatora cherez magnitosopriazhennuiu oblast [Geomagnetic pulsations accompanied the solar terminator moving through magnetoconjugate region] Radiofiz. Radioastron. 2012 Mar; 17 (1): 57–66 [In Russian].

Chernogor LF. Krupnomasshtabnye vozmushcheniia magnitnogo polia Zemli, soprovozhdavshie padenie Cheliabinskogo meteoroida [Large-scale disturbances of the Earth’s magnetic field accompanying the fall of the Chelyabinsk Meteoroid]. Radiofiz. Elektron. 2013; 18 (3): 47 – 54 [In Russian].

Chernogor LF. Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagn. Aeron. 2014 Sep; 54: 613 – 624.

Chernogor LF. Magnetospheric Effects during the Approach of the Chelyabinsk Meteoroid. Geomagn. Aeron. 2018 April 13; 58: 252–265.

Bliokh PV, Nikolaenko AP, Filippov YuF. Global’nye elektromagnitnye rezonansy v polosti Zemlya–ionosfera [Global Electromagnetic Resonances in the Earth–Ionosphere Cavity]. Kiev: Naukova dumka; 1977. 181 p. [In Russian].

Gokhberg MB, Shalimov SL. Vozdeistvie zemletryasenii i vzryvov na ionosferu [Effect of Earthquakes and Explosions on the Ionosphere]. Moscow: Nauka; 2008. 295 p. [In Russian].

Chernogor LF. Radiofizicheskie i geomagnitnye effekty startov raket [Radiophysical and Geomagnetic Effects of Rockets Launches]. Kharkov: KhNU imeni V. N. Karazina; 2009. 386 p. [In Russian].

Chernogor LF, Blaunstein N. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group; 2013. 542 p.

Moore GW. Magnetic disturbances preceding the 1964 Alaska earthquake. Nature. 1964 Aug 01; 203: 508 – 509.

Vorob’ev AA. O vozmozhnosti elektricheskikh razriadov v nedrakh Zemli [On the possibility of electric discharges in the Earth’s interiors], Geol. Geofiz. 1970; 12: 3 – 13 [In Russian].

Gogatishvili YaM. [Geomagnetic precursor of intense earthquakes in the range of geomagnetic pulsations with frequencies of 1 – 0.02 Hz, Geomagn. Aeron. 1984; 24 (4): 697 – 700 [In Russian].

Sidorin АYa. Predvestniki zemletriasenii [Earthquakes precursors]. Moscow: Nauka; 1992. 162 p.

Sobisevich LE, Kanonidi KKh, Sobisevich AL. Ultra low-frequency electromagnetic disturbances appearing before strong seismic events. Dokl. Earth Sci. 2009; 429 (5): 1549–1552.

Sobisevich LE, Sobisevich AL, Kanonidi KKh. Anomalnye geomagnitnye vozmushcheniia, navedennye katastroficheskimi tcunamicheskimi zemletriaseniiami v raione Indonezii [Anomalous geomagnetic disturbances induced by catastrophic tsunami producing earthquakes in the region of Indonesia]. Geofiz. Zh. 2012 Jan; 34 (5): 22–37 [In Russian].

Sobisevich LE, Sobisevich AL, Kanonidi KK, Miseyuk OI. Geomagnetic disturbances in the geomagnetic field's variations at stages of preparation and implementation of the Elazig (March 8, 2010) and M 5.3 (January 19, 2011) earthquakes in Turkey. Doklady Earth Sciences. 2013; 449 (1): 324 – 327.

Sobisevich AL, Starostenko VI, Sobisevich LE, Kendzera AV, Shuman VN, Vol’fman YuM et al. The Black Sea earthquakes of late December 2012 and their manifestations in the geomagnetic field, Geofiz. Zh., 2013; 35 (6): 54 – 70.

Sobisevich LE, Sobisevich AL, Kanonidi KKh. O nekotorykh anomalnykh protcessakh v geosferakh pri podgotovke i razvitii seismicheskikh sobytii [Some anomalous geospheric processes during preparation and development of seismic events]. Trigger effects in geospheres, in Materialy tret’ego Vserossiiskogo seminara–soveshchaniya (Proceedings of the Third All-Russian Workshop–Meeting), In: Adushkin VV, Kocharyan GG, editors. Moscow: GEOS; 2015. P. 284 – 294 [In Russian].

Fraser-Smith AC, Bernardi A, McGill PR, Ladd ME, Helliwell RA, Villard OG. Jr. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys. Res. Lett. 1990 Aug; 17 (9): 1465–1468.

Campbell WH. Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake. J. Geophys. Res. 2009 May 16; 114: A05.307.doi: 10.1029/2008JA013932.

Shestopalov IP, Belov SV, Soloviev AA, Kuzmin YuD. Neutron generation and geomagnetic disturbances in connection with the Chilean earthquake of February 27, 2010 and a volcanic eruption in Iceland in March – April 2010. Geomagn. Aeron. 2013 Feb; 53 (1): 124–135.

Romanova NV, Pilipenko VA, Stepanova MV. On the magnetic precursor of the Chilean earthquake of February 27, 2010. Geomagn. Aeron. 2015 Apr 09; 55 (2): 219 – 222.

Molchanov OA, Kopytenko YuA, Voronov PM, Kopytenko EA, Matiashvili TG, Fraser-Smith AC, et al. Results of magnetic field measurements near the epicenters of the Spitak (Ms = 6.9) and the Loma Prieta (Ms = 7.1) Earthquakes: comparative analysis. Geophys. Res. Lett. 1992 Jul 24; 19 (14): 1495 – 1498.

Kopytenko YuA, Matiashvili TG, Voronov PM, Kopytenko EA, Molchanov OA. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Physics of the Earth and Planetary Interiors. 1993 Apr; 77 (1 – 2): 85 – 95.

Hayakawa M, Kawate R, Molchanov OA, Jumoto K. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996 Feb 01; 23 (3): 241 – 244.

Schekotov A, Fedorov E, Hobara Y, Hayakawa M. ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake. Journal of Atmospheric Electricity. 2013 Jan 01; 33 (1): 41–51.

Schekotov A., Fedorov E., Hobara Y., Hayakawa M. ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake. Radiofizika i elektronika. 2013; 4 (18) (1): 47 – 52 [In Russian].

Fraser-Smith AC, McGill PR, Helliwell RA, Villard OGJr. Ultra-low frequency magnetic field measurements in southern California during the Northridge earthquake of 17 January 1994. Geophys. Res. Lett. 1994 Oct 01; 21 (20): 2195 – 2198.

Fraser-Smith AC. Ultralow-frequency magnetic fields preceding large earthquakes. Eos. 2008 Jun 03; 89 (23): 211.

Karakelian D, Klemperer SL, Fraser-Smith AC, Thompson G. A. Ultra-low frequency electromagnetic measurements associated with the 1998 (Mw = 5.1) San Juan Bautista, California earthquake and implications for mechanisms of electromagnetic earthquake precursors. Tectonophysics. 2002 Nov 22; 359 (1 – 2): 65 – 79.

Park SK, Johnston M, Madden TR, Morgan FD, Morrison HF. Electromagnetic precursors to earthquakes in the ULF band: a review of observations and mechanisms. Rev. Geophys. 1993 May; 31 (2): 117 – 132.

Geller RJ. Earthquake prediction: a critical review. Geophys. J. Int. 1997 Dec; 131 (3): 425 – 450.

Bakun WH, Aagaard B, Dost B, Ellsworth WL, Hardebeck JL, Harris RA, et al. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature. 2005 Oct 13; 437 (706): 969 – 974.

Kosterin NA, Pilipenko VA, Dmitriev EM. O globalnykh ultranizkochastotnykh elektromagnitnykh signalakh pered zemletriaseniiami [On global ultralow frequency electromagnetic signals prior to earthquakes]. Geophysical investigations. 2015; 16 (1): 24-34 [In Russian].

Bakhmutov VG, Sedova FI, Mozgovaya TA. Morphologic indicators in the structure of geomagnetic variations during the preparation of the strong earthquake of March 25, 1998 in the Antarctic, Ukrainian Antarctic Journal. 2003; 1: 54 – 60.

Surkov VV, Pilipenko VA. Magnetic effects due to earthquakes and underground explosions: a review. Annali di geofisica. 1997; 40 (2): 227 – 239.

Guglielmi AV. Ultra-low-frequency electromagnetic waves in the Earth’s crust and magnetosphere. Phys. Usp. 2007 Dec; 50 (12): 1197–1216.

Iyemeri T, Nose M, Han D, Gao J, Hashizume M, Choosakul N, et al. Geomagnetic pulsations caused by the Sumatra earthquake on December 26, 2004. Geophys. Res. Lett. 2005 Oct 21; 32 (20): L20807.

Golikov YuV, d’Costa A, Pilipenko BA. Geomagnetic pulsations generated during strong earthquakes. Geomagn. Aeron. 1985 Oct; 25 (5): 824 – 828 [In Russian].

Hattori K. ULF geomagnetic changes associated with large earthquakes. Terr. Atmos. Ocean Sci. 2004 Sep; 15 (3): 329 – 360.

Hattori K. ULF geomagnetic changes with major earthquakes. In: Earthquake prediction studies: Seismoelectromagnetic. Hayakawa M, editor. Tokyo: Terra Scientific Pub. Comp.; 2013. P. 129 – 152.

Dubrov MN, Smirnov VM. Interdependent perturbations of the Earth’s surface, atmosphere, and ionosphere. Geomagn. Aeron. 2013 Jan; 53 (1): 49 – 59. https://doi.org/10.1134/S0016793213010088

Kosmicheskii proekt «Ionosat-Mikro»: monografiia [Space Project “Ionosat-Micro”: monograph]. In: Zasukha SA, Fedorov OP, editors. Kyiv: Academperiodika; 2013, 218 p. [in Russian].

Lazorenko OV, Chernogor LF. Sistemnyi spektralnyi analiz signalov: teoreticheskie osnovy i prakticheskie primeneniia [The System Spectral Analysis: Theoretical Bases and Practical Applications] Radio Phys. Radio Astron. 2007 Jun; (2): 162 – 181 [In Russian].

Chernogor LF. Advanced Methods of Spectral Analysis of Quasiperiodic Wave-Like Processes in the Ionosphere: Specific Features and Experimental Results. Geomagnetism and Aeronomy. 2008 Oct 03; 48 (5): 652 – 673.

Chernogor LF, Smirnova EO. Fluktuatcii urovnia geomagnitnogo polia, soprovozhdavshie silneishie zemletriaseniia [Geomagnetic field level fluctuations accompanied strong earthquakes]. Trudy mezhdunarodnoi Baikalskoi molodezhnoi nauchnoi shkoly po fundamentalnoi fizike. 2017 Sep 11 – 16: Irkutsk, Russia. 2017. p. 155 – 157 [In Russian].

Chernogor LF, Smirnova E. O. Geomagnitnye fluktuatcii, soputstvovavshie silneishim zemletriaseniiam [Geomagnetic fluctuations accompanied strong earthquakes]. Tezi 17 Ukrayinskoyi konferentcіyi z kosmіchnikh doslіdzhen; 2017 Aug 21 – 25; Odessa, Ukraine. Kyiv, Ukraine; 2017. p. 164 [In Russian].

Calais E, Minster JB. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophysical Research Letters. 1995 May 01; 22 (9): 1045 – 1048.

Afraimovich EL, Perevalova NP, Plotnikov AV, Uralov AM. The shock acoustic waves generated by earthquakes. Ann. Geophys. 2001 Jan 01; 19: 395 – 409.

Ducic V, Artru J, Lognonné P. Ionospheric remote sensing of the Denali earthquake Rayleigh surface waves. Geophysical Research Letters [Internet]. 2003 Sep 25; 30 (18): 1951. Available from: https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2003GL017812 doi: 10.1029/2003GL017812

Astafyeva E, Afraimovich EL. Long-distance traveling ionospheric disturbances caused by the great Sumatra-Andaman earthquake on 26 December 2004. Earth Planets Space. 2006 Sep 16; 58(8): 1025 – 1031.

Liu JY, Tsai YB, Chen SW, Lee CP, Chen YC, Yen HY, et al. Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004. Geophysical Research Letters. 2006 Jan; 33: L02103.

Lognonné P, Artru J, Garcia R, Crespon F, Ducic V, Jeansou E, et al. Ground based GPS imaging of ionospheric post-seismic signal. Planet. Space Sci. 2006 Apr; 54 (5): 528 – 540.

Rolland LM, Lognonné P, Astafyeva E, Kherani EA, Kobayashi N, Mann M, et al. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space. 2011 Jun; 63 (7): 853 – 857.

Garcia RF, Doornbos E, Bruinsma S, Hebert H. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE. J. Geophys. Res. Atmos. 2014 Apr 27; 119: 4498–4506 doi:10.1002/2013JD021120.

Jin S, Occhipinti G, Jin R. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Science Reviews. 2015 Aug; 147: 54 – 64 doi:10.1016/j.earscirev.2015.05.003

Heki K. Ionospheric disturbances related to Earthquakes. In Advances in Ionospheric Research: Current Understanding and Challenges. AGU/Wiley Book; 2018. [In press].

Meng X, Vergados P, Komjathy A, Verkhoglyadova O. Upper Atmospheric Responses to Surface Disturbances: An Observational Perspective. Radio Sci. 2019 Oct; Grand Challenges in the Earth and Space Sciences: 1076 – 1098. DOI: 10.1029/2019RS006858.

Chernogor LF. Possible Generation of Quasi-Periodic Magnetic Precursors of Earthquakes. Geomagn. Aeron. 2019 Jun 17; 59: 374–382.

Pulinets SA, Ouzounov DP, Karelin AV, Davidenko DV. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron. 2015 Jul 25; 55: 521–538.

Guo Q, Chernogor LF, Garmash KP, Rozumenko VT, Zheng Y. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. Journal of Atmospheric and Solar-Terrestrial Physics. 2019 May;186:88–103.

Опубліковано
2019-12-24
Цитовано
0 статей