STRUCTURAL RELAXATION AND DIFFUSION OF THE LABILE COMPONENT IN NON-STOCHIOMETRICAL CUPRATES ReBa2Cu3O7-Δ (Re = Y, HO) AND ASSOCIATED OXIDES (overview)

  • L. O. Pashchenko V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine https://orcid.org/0009-0006-3620-2749
  • A. O. Komisarov V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine
  • A. Yu. Vragov V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine https://orcid.org/0009-0006-0913-9035
  • V. A. Kovrygyn V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine
  • V. V. Sajnchin V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine
  • G. Ya. Khadzhai V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine https://orcid.org/0000-0002-1257-8702
  • R. V. Vovk https://orcid.org/0000-0002-9008-6252
Keywords: ReBa2Cu3O7-δ single crystals, annealing, structural relaxation, labile oxygen, pseudogap anomaly, metal-dielectric transition, accompanying oxides

Abstract

The paper investigates the effect of annealing at room temperature on the electrical resistance in the ab-plane ρab(T) of ReBa₂Cu₃O₇ (Re = Y, Ho) single crystals with oxygen deficiency. It was found that the reduction of oxygen content induces phase segregation, accompanied by the diffusion of a labile component and structural relaxation in the sample volume, confirming the critical role of oxygen deficiency in determining the structural and electrophysical properties of these materials.

Annealing at room temperature with varying oxygen deficiencies results in an expansion of the linear range of ρab(T) and a narrowing of the temperature region where the pseudogap regime occurs, highlighting the importance of oxygen concentration in forming the electronic structure. Excess conductivity follows an exponential temperature dependence over a broad temperature range, indicating the presence of nonlinear effects. The pseudogap temperature dependence is well described within the BKD-BEK crossover theory, confirming a transition between two modes of material behavior.

Replacing yttrium with holmium (Re = Ho) affects the charge distribution in the CuO planes, leading to disorder in the oxygen subsystem, which alters the electronic structure, manifesting as shifts in temperature regions corresponding to metal-insulator transitions and pseudogap anomaly. Thus, the results demonstrate that controlling the oxygen content and chemical composition of ReBa₂Cu₃O₇-δ crystals is an effective method for managing their electrophysical properties. The obtained short-range interatomic potential values can also be used for systematic studies of the complex behavior and defect chemistry of these materials at the atomic level. The use of "atomic scale techniques" allows not only for improving the physicochemical parameters of various rare earth oxides (REO) compounds but also for validating the adequacy of numerous current theoretical studies.

Downloads

Download data is not yet available.

References

1. B. P. Stojkovic, D. Pines. Phys. Rev. B, 55, 13, 8567 (1997). https://doi.org/10.1103/PhysRevB.55.8576
2. В. Н. Зверев, Д. В. Шовкун. Письма в ЖЭТФ, 72, 2, 103 (2000).
3. В. Я. Сухаревский, И. В. Жихарев, С. И. Хохлова и др. Препринт, ДонФТИ, 91 (1990).
4. А. А. Мамалуй, Л. С. Палатник, К. В. Беднов, М. А. Оболенський, А. В. Бондаренко. ФНТ, 19, 11, 1180 (1993).
5. M. A. Obolenskii, R. V. Vovk, A. V. Bondarenko, N. N. Chebotaev. Low Temp. Phys., 32, 571 (2006). http://dx.doi.org/10.1063/1.2215373
6. K. Mitsen, O. Ivanenko. J. Exp. Theor. Phys., 100, 1082 (2005). https://doi.org/10.1134/1.1995792
7. I. A. Chaban. Phys. Solid State Phys., 5, 769 (2008). https://doi.org/10.1134/S1063783408050016
8. A. A. Abrikosov. Phys. Rev. B, 74, 180505 (2006). https://doi.org/10.1103/PhysRevLett.93.097004
9. Y. Kohsaka, K. Iwaya, S. Satow, T. Hanaguri, M. Azuma, M. Takano, H. Takagi. Phys. Rev. Lett., 93, 097004 (2004). https://doi.org/10.1103/PhysRevLett.93.097004
10. R. V. Vovk, M. A. Obolenskii, A. A. Zavgorodnii, A. V. Bondarenko, I. L. Gulatis, N. N. Chebotaev. Low Temp. Phys., 33, 710 (2007) https://doi.org/10.1063/1.2746848.
11. D. M. Ginsber. Physical Properties of High-Temperature Superconductors. Singapore, World Scientific, (1990), 526 р. https://doi.org/10.1142/1023
12. T. Krekels, H. Zou, G. V. Tendeloo, D. Wagener, M. Buchgeister, S. Hosseini, Herzog. Physica C, 196, 363 (1992).
13. R. Vovk, N. Vovk, A. Samoilov, I. Goulatis, A. Chroneos. Solid State Commun., 170, 6 (2013).
14. В. В. Мощалков, І. Г. Муттік, Н. А. Самарін, Ю. Д. Третяков, А. Р. Каул, І. Є. Грабой, Ю. Г. Метлін. ФНТ, 14, 988 (1988).
15. R. V. Vovk, Z. F. Nazyrov, M. A. Obolenskii, I. L. Goulatis, A. Chroneos, V. M. Pinto Simoes. Philos. Mag., 91, 2291 (2011). https://doi.org/10.1080/14786435.2011.573705
16. N. F. Mott. Metal-insulator transitions London, CRC Press (1990), 296 p.
17. Y. A. Izyumov, E. Z. Kurmaev. Phys. Usp., 178, 1307 (2008).
18. D. H. S. Smith, R. V. Vovk, C. D. H. Williams, A. F. G. Wyatt. New J. Phys., 8, 128 (2006). https://doi.org/10.1088/1367-2630/8/8/128
19. I. N. Adamenko, K. E. Nemchenko, V. I. Tsyganok, A. I. Chervanev. Low Temp. Phys., 20, 498 (1994).
20. R. V. Vovk, C. D. H. Williams, A. F. G. Wyatt. Phys. Rev. B, 69, 144524 (2004). https://doi.org/10.1103/PhysRevB.69.144524
21. A. J. Matthews, K. V. Kavokin, A. Usher, M. E. Portnoi, M. Zhu, J. D. Gething, M. Elliott, W. G. Herrenden-Harker, K. Phillips, D. A. Ritchie, M. Y. Simmons, C. B. Sorensen, O. P. Hansen, O. A. Mironov, M. Myronov, D. R. Leadley, M. Henini. Phys. Rev. B, 70, 075317 (2004). https://doi.org/10.1103/PhysRevB.70.075317
22. P. J. Curran, V. V. Khotkevych, S. J. Bending, A. S. Gibbs, S. L. Lee, A. Mackenzie. Phys. Rev. B, 84, 104507 (2011). https://doi.org/10.1103/PhysRevB.84.104507
23. D. De Fontaine, G. Ceder, M. Asta. J. Less Common Met., 108, 164 (1990). https://doi.org/10.1016/0254-0584(93)90189-S
24. В. Я. Сухаревський, І. В. Жихарев, С. І. Хохлова та ін. Препринт, ДонФТІ, 91 (1990).
25. J. L. Tallon, C. Bernhard, H. Shaked, R. L. Hitterman, J. D. Jorgensen. Phys. Rev. B, 51, 12911 (1995). https://doi.org/10.1103/PhysRevB.51.12911
26. N. Hirosaki, S. Ogata, C. Kocer. J. Alloys Compd., 351, 31 (2003). http://dx.doi.org/10.1016/S0925-8388(02)01043-5
27. W. H. Zachariasen. Phys. Chem., 123, 134 (1926).
28. L. Pauling. Z. Kristallogr., A 69, 415 (1928).
29. D. T. Cromer. J. Phys. Chem., 61, 753 (1957).
30. H. L. Yakel. Acta Cryst., B 35, 564 (1979).
31. T. Schleid, G. Meyer. Less-Common Met., 149, 73 (1989).
32. E. Hubbert-Paletta, H. Mueller-Buschbaum. Anorg. Allg. Chem., 363, 145 (1968).
33. R. W. Grimes, G. Busker, M. A. McCoy. Ber. Bunsen. Phys. Chem., 98, 740 (1994).
34. S. K. Mishra, S. K. Samdarshi, R. K. Singh. J. Phys. Chem. Solids, 56, 999 (1995).
35. H. Mizoguchi, H. Hosono. J. Am. Ceram. Soc., 87, 1187 (2004).
36. N. Izyumov, E. Kurmaev. Usp. Fiz. Nauk, 176, 1241 (2006).
37. A. A. Bosak, I. P. Zibrov, M. G. Semenov. J. Struct. Chem., 49, 342 (2008).
38. J. P. Attfield, A. J. Williams. Physica B, 404, 2989 (2009). https://doi.org/10.1103/PhysRevB.73.104409
39. C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveau. Z. Anorg. Allg. Chem., 540, 15 (1987).
40. A. A. Tsirlin, A. N. Vasiliev, I. Orobchenko, H. Nakamura, M. Taguchi. J. Mater. Chem., 20, 1008 (2010). https://doi.org/10.1039/B921746F
41. R. V. Vovk, M. A. Obolenskii, A. V. Bondarenko, Z. F. Nazyrov, N. N. Chebotaev. Low Temp. Phys., 38, 899 (2012). https://doi.org/10.1063/1.4752436
42. S. Naito, M. Sano, H. Imai, T. Akiyama. Solid State Commun., 2005, 136, 100 (2005). https://doi.org/10.1016/j.ssc.2005.06.003
43. H. Mizoguchi, R. Shiratsuchi, T. Kimura, T. Tani. Chem. Mater., 14, 1450 (2002). https://doi.org/10.1021/cm011527u
44. M. A. Obolenskii, R. V. Vovk, N. N. Chebotaev, I. L. Goulatis. J. Appl. Phys., 110, 073920 (2011). https://doi.org/10.1063/1.3646470
45. K. E. Nemchenko, A. I. Chervanev, D. V. Moiseenko. Mater. Res. Bull., 48, 3503 (2013). https://doi.org/10.1016/j.materresbull.2013.06.055
46. G. J. Snyder, E. S. Toberer. Nat. Mater., 7, 105 (2008). https://doi.org/10.1038/nmat2090
47. R. W. Cahn, P. Haasen, E. J. Kramer. Materials science and technology. VCH-Publishers, Weinheim (1991), 405 p.
48. R. D. Shannon., A32, 751 (1976). https://doi.org/10.1107/S0567739476001551.
49. J. B. Goodenough. J. Solid State Chem., 5, 144 (1967). https://doi.org/10.1016/0022-4596(67)90062-0.
50. H. Fjellvag, F. Gronvold. Acta Chem. Scand., 37, 745 (1983).
51. A. I. Gusev, A. A. Rempel, A. V. Kaverin. Solid State Ionics, 101, 285 (1997). https://doi.org/10.1016/S0167-2738(97)00462-4
52. T. Minami, T. Miyata, T. Yamamoto. Thin Solid Films, 372, 173 (2000) https://doi.org/10.1016/S0040-6090(00)01094-0 .
53. H. Sawada, T. Osawa, S. Motomura, H. Muta, K. Kurosaki. J. Alloys Compd., 389, 197 (2005). https://doi.org/10.1016/j.jallcom.2004.08.079
54. J. F. Scott, H. L. Tuller, P. S. Wang. Mater. Sci. Eng., 11, 51 (1973).
55. A. Kato, H. Nagasawa, S. Ikeda. J. Solid State Chem., 80, 123 (1989). https://doi.org/10.1016/0022-4596(89)90168-5
56. R. V. Vovk, Z. F. Nazyrov, M. A. Obolenskii, I. L. Goulatis. Low Temp. Phys., 40, 456 (2014). https://doi.org/10.1063/1.4870852
57. S. Hayashi, K. Asai, M. Akiyama. J. Appl. Phys., 54, 2240 (1983). https://doi.org/10.1063/1.332571
58. M. T. Anderson, K. R. Poeppelmeier. Chem. Mater., 6, 2 (1994). https://doi.org/10.1021/cm00038a002
59. Y. Yamazaki, P. H. Hor, C. W. Chu. Appl. Phys. Lett., 52, 1934 (1988). https://doi.org/10.1063/1.99335
60. D. M. Ginsberg (ред.). том 3. Москва: Наука, (1995).
Published
2024-05-30
How to Cite
Pashchenko, L. O., Komisarov, A. O., Vragov, A. Y., Kovrygyn, V. A., Sajnchin, V. V., Khadzhai, G. Y., & Vovk, R. V. (2024). STRUCTURAL RELAXATION AND DIFFUSION OF THE LABILE COMPONENT IN NON-STOCHIOMETRICAL CUPRATES ReBa2Cu3O7-Δ (Re = Y, HO) AND ASSOCIATED OXIDES (overview). Journal of V. N. Karazin Kharkiv National University. Series Physics, (40), 7-24. https://doi.org/10.26565/2222-5617-2023-40-01

Most read articles by the same author(s)

<< < 1 2 3 > >>