Modeling of thermal processes during electroconsolidation
Keywords:
electroconsolidation, finite element simulation, thermal processes, Al2O3-SiC
Abstract
Practical application of mathematical modeling technologies of heat transfer processes in the main units of the installation for electroconsolidation of powder materials using FAST/SPS technology is considered. A mathematical model of the existing hot pressing unit with direct current transmission is created.
The results on the heat distribution in the installation parts and in the compaction zone are obtained. Comparison of simulation results with experimental data is given. The significance of the data obtained by using similar techniques, both from the fundamental point of view and from the practical one, is shown.
Downloads
Download data is not yet available.
References
1. Andrievsky R.A., Glezer A.M. (2000) Dimensional effects in nanocrystalline materials.2.Mechanical and physical properties. Fizika metallov i metallovedenie, Vol. 89, № 1, pp. 91-112. [in Russian]
2. Gleiter H. Nanostructured materials: state of the art and perspective. Nanostructured Materials,1995, № 6, pp. 3-14.
3. Hasanov O.L. Submicrostructure and properties of structural, piezoelectric and ferroelectric ceramics made by the method of dry ultrasonic compacting of nanopowders. Konstruktsii iz kompozitsionnyih materialov, 2001, № 4, pp. 3-10. [in Russian]
4. Skorokhod V.V., Uvarova I.V., Ragulya A.V. Physicochemical kinetics in nanostructural systems. Kiev, Akademperiodika, 2001, p. 180. [in Ukrainian]
5. Gevorkyan Edwin, Sofronov Dmitry, Lavrynenko Sergiy, Rucki Miroslaw : Synthesis of Nanopowders and Consolidation of Nanoceramics of Various Applications // Journal of Advances in Nanomaterials, 2017. - Vol. 2, - No 3, pp. 153-159.
6. R.V. Vovk, N.M. Prokopiv, V.A. Chishkala, M.V. Kislitsa. Investigation of structure and properties of composite material Al2O3–SiC obtained by electroconsolidation process. Functional Materials, 25 (1), 2018, pp. – 43-47. https://doi.org/10.15407/fm25.01.043
7. Elzbieta Ermer, Ptak Wiesław, Stobierski Ludosław, Influence of sintering activators on structure of silicon carbide.Solid State Ionics 141–142 (2001) 523–528
8. Пат.72841 Україна, МПК (2012.01)B22F 3/00. Пристрій для гарячого пресування порошків шляхом прямого пропускання електричного струму / Азеренков М.О., Геворкян Е.С., Литовченко С.В., Чишкала В.О., Тимофеєва Л.А., Мельник О.М., Гуцаленко Ю.Г.; заявник і патентовласник Геворкян Е.С. - № u 2012 03 031; заявл. 15.03.12; опубл. 27.08.12, Бюл. №16.
9. Maizza G. , Grasso S., Sakka Y. Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder // J. Mater. Sci. – 2009. – V. 44. – Pp. 1219 – 1236.
10. Rothe S., Kalabukhov S., Frage N., Hartmann S. Field assisted sintering technology. Part I: Experiments, constitutive modeling and parameter identification. – GAMM-Mitt. – 2016. – Vol. 39. – No. 2. Pp. 114 – 148.
11. Rothe S., Hartmann S. Field Assisted Sintering Technology, Part II: Simulation. – GAMM-Mitt. – 2017. – Vol. 40. – No. 1. Pp. 8 – 26.
12. Allen J. B., Walter C. Numerical Simulation of the Temperature and Stress Field Evolution Applied to the Field Assisted Sintering Technique. – ISRN Materials Science. – 2012. – Volume 2012, Article ID 698158, 9 pages.
13. Wei X., Giuntini D., Maximenko A. L., Haines C. D., Olevsky E. A. Experimental Investigation of Electric Contact Resistance in Spark Plasma Sintering Tooling Setup // Journal of the American Ceramic Society. – March 2015. – DOI: 10.1111/jace.13621. – Pp. 1–35.
14. Manière C., Durand L., Brisson E., Desplats H., Carré P., Rogeon P., Estournès C. Contact resistances in spark plasma sintering: From in-situ and ex-situ determinations to an extendedmodel for the scale up of the process. – Journal of the European Ceramic Society. – 2017. – Vol. 37. – Nº 4. – Pp. 1593 – 1605
2. Gleiter H. Nanostructured materials: state of the art and perspective. Nanostructured Materials,1995, № 6, pp. 3-14.
3. Hasanov O.L. Submicrostructure and properties of structural, piezoelectric and ferroelectric ceramics made by the method of dry ultrasonic compacting of nanopowders. Konstruktsii iz kompozitsionnyih materialov, 2001, № 4, pp. 3-10. [in Russian]
4. Skorokhod V.V., Uvarova I.V., Ragulya A.V. Physicochemical kinetics in nanostructural systems. Kiev, Akademperiodika, 2001, p. 180. [in Ukrainian]
5. Gevorkyan Edwin, Sofronov Dmitry, Lavrynenko Sergiy, Rucki Miroslaw : Synthesis of Nanopowders and Consolidation of Nanoceramics of Various Applications // Journal of Advances in Nanomaterials, 2017. - Vol. 2, - No 3, pp. 153-159.
6. R.V. Vovk, N.M. Prokopiv, V.A. Chishkala, M.V. Kislitsa. Investigation of structure and properties of composite material Al2O3–SiC obtained by electroconsolidation process. Functional Materials, 25 (1), 2018, pp. – 43-47. https://doi.org/10.15407/fm25.01.043
7. Elzbieta Ermer, Ptak Wiesław, Stobierski Ludosław, Influence of sintering activators on structure of silicon carbide.Solid State Ionics 141–142 (2001) 523–528
8. Пат.72841 Україна, МПК (2012.01)B22F 3/00. Пристрій для гарячого пресування порошків шляхом прямого пропускання електричного струму / Азеренков М.О., Геворкян Е.С., Литовченко С.В., Чишкала В.О., Тимофеєва Л.А., Мельник О.М., Гуцаленко Ю.Г.; заявник і патентовласник Геворкян Е.С. - № u 2012 03 031; заявл. 15.03.12; опубл. 27.08.12, Бюл. №16.
9. Maizza G. , Grasso S., Sakka Y. Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder // J. Mater. Sci. – 2009. – V. 44. – Pp. 1219 – 1236.
10. Rothe S., Kalabukhov S., Frage N., Hartmann S. Field assisted sintering technology. Part I: Experiments, constitutive modeling and parameter identification. – GAMM-Mitt. – 2016. – Vol. 39. – No. 2. Pp. 114 – 148.
11. Rothe S., Hartmann S. Field Assisted Sintering Technology, Part II: Simulation. – GAMM-Mitt. – 2017. – Vol. 40. – No. 1. Pp. 8 – 26.
12. Allen J. B., Walter C. Numerical Simulation of the Temperature and Stress Field Evolution Applied to the Field Assisted Sintering Technique. – ISRN Materials Science. – 2012. – Volume 2012, Article ID 698158, 9 pages.
13. Wei X., Giuntini D., Maximenko A. L., Haines C. D., Olevsky E. A. Experimental Investigation of Electric Contact Resistance in Spark Plasma Sintering Tooling Setup // Journal of the American Ceramic Society. – March 2015. – DOI: 10.1111/jace.13621. – Pp. 1–35.
14. Manière C., Durand L., Brisson E., Desplats H., Carré P., Rogeon P., Estournès C. Contact resistances in spark plasma sintering: From in-situ and ex-situ determinations to an extendedmodel for the scale up of the process. – Journal of the European Ceramic Society. – 2017. – Vol. 37. – Nº 4. – Pp. 1593 – 1605
Published
2018-10-10
How to Cite
Gevorkyan, E. S., Dutka, V. A., Vovk, R. V., & Kislitsa, M. V. (2018). Modeling of thermal processes during electroconsolidation. Journal of V. N. Karazin Kharkiv National University. Series Physics, (28), 79-82. https://doi.org/10.26565/2222-5617-2018-28-9
Section
Articles