Evolution of the excess conductivity in slightly doped YBa2Cu3O7-δ under high pressure

  • A. L. Solovjov B. I.Verkin Institute for Low Temperature Physics and Engineering of National Academy of Science of Ukraine, 47 Lenin ave., 61103 Kharkov, Ukraine
  • L. V. Omelchenko B. I.Verkin Institute for Low Temperature Physics and Engineering of National Academy of Science of Ukraine, 47 Lenin ave., 61103 Kharkov, Ukraine
  • R. V. Vovk Physics Department, V. N. Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine
Keywords: Fluctuation conductivity, pseudogap, pressure, excess conductivity, YBaCuO single crystals

Abstract

The influence of hydrostatic pressure up to P=1.05 GPa on resistivity, excess conductivity σ/(T) and pseudogap (PG) Δ*(T) in slightly doped single crystals of YBa2Cu3O7-δ (Tc(P = 0) ≈49.2 K and δ ≈ 0.5) is studied. For the first time it is found that the BCS ratio 2Δ*/kBTc and PG Δ* both increase with increasing external hydrostatic pressure at a rate dlnΔ*/dP ≈ 0.37 GPa-1, implying an increase of the coupling strength with pressure. Simultaneously, the critical temperature Tc also increases with increasing pressure at a rate
dTc/dP = +5.1 K·GPa-1, whereas resistivity ρ(300K) decreases at a rate dlnρ/dP = (-19±0.2)% GPa-1. Independently on pressure near Tc σ/(T) is well described by the Aslamasov-Larkin and Hikami-Larkin fluctuation theories demonstrating 3D-2D crossover with increase of temperature. The crossover temperature T0 determines the coherence length along the c-axis ξc(0) = (3.43 ± 0.01)Ǻ at P=0 GPa, which decreases with pressure.

Downloads

Download data is not yet available.

References

A. L. Solovjov, Superconductors - Materials, Properties and Applications. Chapter 7: Pseudogap and local pairs in high-Tc superconductors, InTech, Rijeka, 137 (2012).

A. A. Kordyuk, arXiv:1501.04154v1 [cond-mat.suprcon] (2015).

R. Peters, and J. Bauer, arXiv:1503.03075v1 [condmat.suprcon] (2015).

C.W. Chu, P.H. Hor, R.L. Meng, L. Gao, A.J. Huang, Y.Q. Wang, Phys. Rev. Lett. 58 (1988) 405.

H.J. Liu, Q. Wang, G.A. Saunders, D.P. Almond, B. Chapman, K. Kitahama, Phys. Rev. B 51 (1995) 9167.

L.M. Ferreira, P. Pureur, H.A. Borges, P. Lejay, Phys. Rev. B 69 (2004) 212505.

L.J. Shen, C.C. Lam, J.Q. Li, J. Feng, Y.S. Chen, H.M. Shao, Supercond. Sci. Technol. 11 (1998) 1277.

Q. Wang, G.A. Saunders, H.J. Liu, M.S. Acres, D.P. Almond, Phys. Rev. B 55 (1997) 8529.

A.L. Solovjov, V.M. Dmitriev, Low Temp. Phys. 32 (2006) 99.

A.L. Solovjov, M.A. Tkachenko, Metallofiz. Noveishie Tekhnol. 35, (2013) 19,1112.3812v1 [cond-mat,supr-con] (2012).

R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, V.I. Beletskii, A.Chroneos, Physica C 469 (2009) 203.

R.V. Vovk, Z.F. Nazyrov, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes, Philos. Mag. 91 (2011) 2291.

R.V. Vovk, M.A. Obolenskii, Z.F. Nazyrov, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes, J. Mater Sci.: Mater. Electron. 23 (2012) 1255.

R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, A.V. Bondarenko, I.L. Goulatis,A.V. Samoilov, A.I. Chroneos, J. Alloys Comp. 453 (2008) 69.

A.L. Solovjov, M.A. Tkachenko, R.V. Vovk, M.A. Obolenskii, Low Temp. Phys. 37 (2011) 840.

B. Wuyts, V. V. Moshchalkov, and Y. Bruynseraede. Phys. Rev. B 53, (1996) 9418.

T. Ito, K. Takenaka, S. Uchida, Phys. Rev. Lett. 70 (1993) 3995.

Y. Ando, S. Komiya, K. Segawa, S. Ono, Y. Kurita, Phys. Rev. Lett. 93 (2004) 267001.

T. Ito, K. Takenaka, S. Uchida, Phys. Rev. Lett. 70 (1993) 3995.

B. P. Stojkovic, D. Pines, Phys. Rev. B 55, 8576 (1997).

E. V. L. de Mello, M. T. D. Orlando, J. L. Gonzalez, E. S. Caixeiro, and E. Baggio-Saitovich, Phys. Rev. B, 66, (2002) 092504.

A. L. Solovjov, M. A. Tkachenko, R. V. Vovk , A. Chroneos, Physica C 501, (2014) 24.

A. Maisuradze, A. Shengelaya, A. Amato, E. Pomjakushina, and H. Keller. Phys. Rev. B 84, (2011) 184523.

J. S. Schilling and S. Klotz, in Physical Properties of HighTemperature Superconductors, edited by D. M. Ginsberg (World Scientific, Singapore, 1992), vol. 3, p. 59.

W. Lang, G. Heine, P. Schwab, X. Z. Wang, and D. Bauerle, Phys. Rev. B, 49, 4209 (1994).

B. Oh, K. Char, A. D. Kent, M. Naito, M. R. Beasley et al., Phys. Rev. B, 37, 7861 (1988).

R. K. Nkum and W. R. Datars, Phys. Rev. B, 44, 12516 (1991).

E. M. Lifshitz and L. P. Pitaevski, Statistical Physics, vol. 2, Moscow: Nauka, 1978.

L.G. Aslamazov, A.L. Larkin, Phys. Lett. 26A (1968) 238.

Y. B. Xie, Phys. Rev. B, 46, (1992) 13997.

S. Hikami, A.I. Larkin, Mod. Phys. Lett. B, 2, (1988) 693.

A.L. Solovjov, H.-U. Habermeier, T. Haage, Low Temp. Phys., 28, (2002) 22, and, 28, (2002) 144.

G.D. Chryssikos, E.I. Kamitsos, J.A. Kapoutsis et al.: Physica C 254, 44 (1995).

V. J. Emery and S. A. Kivelson, Nature, 374, 434 (1995).

H-Y. Choi, Y. Bang, and D. K. Campbell, Phys. Rev. B 61, 9748 (200).

D.S. Inosov, J.T. Park, A. Charnukha, Yuan Li, A.V. Boris, B. Keimer, V. Hinkov, Phys. Rev. B 83, 214520 (2011).

A.I. D’yachenko, V.Yu. Tarenkov, Phys. Techn. High Press. 24, (2014) 24.
Published
2016-12-28
How to Cite
Solovjov, A. L., Omelchenko, L. V., & Vovk, R. V. (2016). Evolution of the excess conductivity in slightly doped YBa2Cu3O7-δ under high pressure. Journal of V. N. Karazin Kharkiv National University. Series Physics, (23), 22-27. Retrieved from https://periodicals.karazin.ua/physics/article/view/7768