Monitoring of groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: a case study of Sragen Regency, Indonesia
Abstract
Problem Statement and Purpose. Groundwater is an important resource for agriculture, drinking water, and ecosystems in Sragen Regency, Central Java, Indonesia. However, the area is significantly water-stressed due to recurrent droughts, pollution, and unsustainable extraction methods. The aim of this study is to monitor the changes of groundwater storages during 2003-2024 using Gravity Recovery and Climate Experiment (GRACE) satellite mission and Global Land Data Assimilation System (GLDAS) products into Google Earth Engine (GEE) to advance Sustainable Development Goal 6 (Clean Water and Sanitation) and SDG 13 (Climate Action).
Data and Method. The study employs GRACE data to analyze Total Water Storage (TWS) and the hydrological components -Soil Moisture SM and Snow Water Equivalent SWE- that GLDAS provides as a supplement. Merging these datasets within GEE seeks to understand groundwater trends from seasonal to long-term.
Result and Discussion. The study observed an average decrease in groundwater storage, with observed stresses during drier-than-usual periods in 2015-2016 and 2018-2020. Whereas, contrary to this long-term declining trend, the groundwater generally rises during wet seasons and falls again during dry seasons, demonstrating seasonality in storage. Furthermore, quantitative analysis revealed a net groundwater storage decline of approximately 15-20% during the 2003-2024 period, with critical depletion phases correlating with events (2015-2016) and prolonged droughts (2018-2020). The GRACE-GLDAS-GEE integration demonstrated high efficacy in detecting seasonal recharge cycles (+8-12 cm equivalent water height during monsoon months) versus dry-season depletion (-10-15 cm), providing unprecedented spatial-temporal resolution for this tropical agricultural region. This approach offers a scalable model for implementing SDG 6.4 (sustainable water withdrawals) through precision aquifer management in developing economies facing climate stress. The results should hasten the consideration of better water management approaches to stop further depletion of groundwater through methods such as managed aquifer recharge and maximizing irrigation efficiencies. This study provides a good example of using GRACE and GLDAS data adoption for regional groundwater monitoring, thus setting a solid basis for interventions aimed at alleviating water scarcity for Sragen Regency and beyond. This information will also serve as input in making decision-supporting management, aligning with SDG 6 targets for sustainable freshwater resource allocation and addressing challenges posed by climate variability and increasing anthropogenic pressures under SDG 13.
Downloads
References
Ramdhani, M. Z., Arifianto, F., & Giarno, G. (2023). Perbandingan Standardized Precipitation Index dan Standardized Anomaly Index untuk Penentuan Tingkat Kekeringan di Kabupaten Sragen, Jawa Tengah. Semesta Teknika, 26(1), 86-96. DOI: https://doi.org/10.18196/st.v26i1.16310
Choir, M. N. A. (2023). Tujuh Kecamatan di Sragen Terdampak Kekeringan. Republika Newspaper. https://rejogja.republika.co.id/berita/s0wus7291/tujuh-kecamatan-di-sragen-terdampak-kekeringan (accessed Feb. 12, 2025)
Susetyo, P.D. (2023). Kekeringan dan Kecukupan Luas Tutupan Hutan. Kompas Newspaper. https://lestari.kompas.com/read/2023/08/07/101409386/kekeringan-dan-kecukupan-luas-tutupan-hutan?page=all (accessed Feb. 12, 2025)
Basuki, T.M., Indrawati, D.R., Nugroho, H.Y.S.H., Pramono, I.B., Setiawan, O., Nugroho, N.P., Maftukhakh, F., Nada, H., Nandini, R., Savitri, E., Adi, R.N. (2024). Water Pollution of Some Major Rivers in Indonesia: the status, institution, regulation, and recommendation for its mitigation. Polish Journal of Environmental Studies, 33(4), 3515-3530. DOI: https://doi.org/10.15244/pjoes/178532
Prajoko, S., Ismawati, R. (2018). Water feasibility study of Bengawan Solo River for irrigation: the need for technology to solve rice field pollution in Sragen, Indonesia. International Journal of Applied Biology, 2(1), 12-21. https://journal.unhas.ac.id/index.php/ijoab/article/view/3971
Yanuarto, T. (2020). Sragen Kekeringan Saat Beberapa Wilayah Lain Alami Banjir. Badan Nasional Penanggulangan Bencana BNPB. https://bnpb.go.id/berita/sragen-kekeringan-saat-beberapa-wilayah-lain-alami-banjir (accessed Feb. 13, 2025)
Han, Y., Zuo, D., Xu, Z., Wang, G., Peng, D., Pang, B., Yang, H. (2022). Attributing the impacts of vegetation and climate changes on the spatial heterogeneity of terrestrial water storage over the Tibetan Plateau. Remote Sensing, 15(1), 117. DOI: https://dx.doi.org/10.2139/ssrn.4206918
Pribilova, V. M. (2013). Underground water resources of Kharkiv region and strategy of their use for water supply of the population. Visnyk of VN Karazin Kharkiv National University, series "Geology. Geography. Ecology", 38(1049), 37-44. https://periodicals.karazin.ua/geoeco/article/view/7666
UNDP, United Nations Development Program. (2017). Sustainable Development Goals: Ukraine. Ministry of Economic Development and Trade of Ukraine. https://www.undp.org/sites/g/files/zskgke326/files/migration/ua/SDGs_NationalReportEN_Web.pdf. (accessed Feb. 13, 2025)
Tiwari, V. M., Wahr, J., Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36(18), 1-5. DOI: https://doi.org/10.1029/2009GL039401
Purdy, A. J., David, C. H., Sikder, M. S., Reager, J. T., Chandanpurkar, H. A., Jones, N. L., Matin, M. A. (2019). An open-source tool to facilitate the processing of GRACE observations and GLDAS outputs: An evaluation in Bangladesh. Frontiers in Environmental Science, 7, 155. DOI: https://doi.org/10.3389/fenvs.2019.00155
Gupta, M., Chinnasamy, P. (2022). Trends in groundwater research development in the South and Southeast Asian Countries: a 50-year bibliometric analysis (1970–2020). Environmental Science and Pollution Research, 29(50), 75271-75292. DOI: https://doi.org/10.1007/s11356-022-21163-4
Nigatu, Z. M., Fan, D., You, W. (2021). GRACE products and land surface models for estimating the changes in key water storage components in the Nile River Basin. Advances in Space Research, 67(6), 1896-1913. DOI: https://doi.org/10.1016/j.asr.2020.12.042
Voss, K. A., Famiglietti, J. S., Lo, M., De Linage, C., Rodell, M., Swenson, S. C. (2013). Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris‐Euphrates‐Western Iran region. Water resources research, 49(2), 904-914. DOI: https://doi.org/10.1002/wrcr.20078
Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T. H., Swenson, S. C., de Linage, C. R., Rodell, M. (2011). Satellites measure recent rates of groundwater depletion in California's Central Valley. Geophysical Research Letters, 38, L03403. DOI: https://doi.org/10.1029/2010GL046442
Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., McMahon, P. B. (2012). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the national academy of sciences, 109(24), 9320-9325. DOI: https://doi.org/10.1073/pnas.1200311109
Castle, S. L., Thomas, B. F., Reager, J. T., Rodell, M., Swenson, S. C., Famiglietti, J. S. (2014). Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophysical research letters, 41(16), 5904-5911. DOI: https://doi.org/10.1002/2014GL061055
Asoka, A., Gleeson, T., Wada, Y., Mishra, V. (2017). Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience, 10(2), 109-117. DOI: https://doi.org/10.1038/ngeo2869
Rodell, M., Velicogna, I., Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999-1002. DOI: https://doi.org/10.1038/nature08238
Richey, A. S., Thomas, B. F., Lo, M. H., Famiglietti, J. S., Swenson, S., Rodell, M. (2015). Uncertainty in global groundwater storage estimates in a T otal G roundwater S tress framework. Water resources research, 51(7), 5198-5216. DOI: https://doi.org/10.1111/j.1752-1688.1969.tb04897.x
Almeida, F. G. V. D., Calmant, S., Seyler, F., Ramillien, G., Blitzkow, D., Matos, A. C. C., Silva, J. S. (2012). Time-variations of equivalent water heights' from Grace Mission and in-situ river stages in the Amazon basin. Acta Amazonica, 42, 125-134. DOI: https://doi.org/10.1590/s0044-59672012000100015
Frappart, F., Ramillien, G. (2018). Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sensing, 10(6), 829. DOI: https://doi.org/10.3390/rs10060829
Herman, J. (2012). Balancing, turning, saving special AOCS operations to extend the GRACE mission. In SpaceOps 2012 (p. 1275114). DOI: https://doi.org/10.2514/6.2012-1275114
Nie, Y., Shen, Y., Chen, Q. (2019). Combination analysis of future polar-type gravity mission and GRACE Follow-On. Remote sensing, 11(2), 200. DOI: https://doi.org/10.3390/rs11020200
Su, X., Guo, J., Shum, C. K., Luo, Z., Zhang, Y. (2020). Increased low degree spherical harmonic influences on polar ice sheet mass change derived from GRACE mission. Remote Sensing, 12(24), 4178. DOI: https://doi.org/10.3390/rs12244178
Flechtner, F., Webb, F., Landerer, F., Dahle, C., Watkins, M., Morton, P., Save, H. (2019, January). GRACE Follow-On: mission status and first mass change observations. In Geophysical Research Abstracts (Vol. 21).
Adhikari, S., Ivins, E. R., Frederikse, T., Landerer, F. W., Caron, L. (2019). Sea-level fingerprints emergent from GRACE mission data. Earth System Science Data, 11(2), 629-646. DOI: https://doi.org/10.5194/essd-11-629-2019
Godah, W., Szelachowska, M., Krynski, J., Ray, J. D. (2020). Assessment of temporal variations of orthometric/normal heights induced by hydrological mass variations over large river basins using GRACE mission data. Remote sensing, 12(18), 3070. DOI: https://doi.org/10.3390/RS12183070
Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., Wilson, C. R. (2008). Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research, 44(2). DOI: https://doi.org/10.1029/2006WR005779
Riegger, J., Tourian, M. J. (2014). Characterization of runoff‐storage relationships by satellite gravimetry and remote sensing. Water Resources Research, 50(4), 3444-3466. DOI: https://doi.org/10.1002/2013WR013847
Sproles, E. A., Leibowitz, S. G., Reager, J. T., Wigington Jr, P. J., Famiglietti, J. S., Patil, S. D. (2015). GRACE storage-runoff hystereses reveal the dynamics of regional watersheds. Hydrology and Earth System Sciences, 19(7), 3253-3272. DOI: https://doi.org/10.5194/hess-19-3253-2015
Long, D., Longuevergne, L., Scanlon, B. R. (2015). Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resources Research, 51(4), 2574-2594. DOI: https://doi.org/10.1111/j.1752-1688.1969.tb04897.x
Billah, M. M., Goodall, J. L., Narayan, U., Reager, J. T., Lakshmi, V., Famiglietti, J. S. (2015). A methodology for evaluating evapotranspiration estimates at the watershed-scale using GRACE. Journal of Hydrology, 523, 574-586. DOI: https://doi.org/10.1016/j.jhydrol.2015.01.066
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., Watkins, M. M. (2004). GRACE measurements of mass variability in the Earth system. Science, 305(5683), 503-505. DOI: https://doi.org/10.1126/science.1099192
Famiglietti, J. S. (2014). The global groundwater crisis. Nature climate change, 4(11), 945-948. DOI: https://doi.org/10.1038/nclimate2425
Lykhovyd, P. (2023). Remote sensing data for drought stress and croplands productivity assessment in Kherson region. Visnyk of VN Karazin Kharkiv National University, series" Geology. Geography. Ecology", (59), 166-177. DOI: https://doi.org/10.26565/2410-7360-2023-59-12
Shukla, M., Maurya, V., Dwivedi, R. (2021). Groundwater monitoring using grace mission. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 425-430. DOI: https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-425-2021
NASA. (2023). Tracking groundwater changes around the world. Caliifornia Institute of Technology. https://grace.jpl.nasa.gov/applications/groundwater/ (accessed Feb. 20, 2025)
Badan Pusat Statistik Kabupaten Sragen. (2024) KABUPATEN SRAGEN DALAM ANGKA 2024. https://sragenkab.bps.go.id/id/publication/2024/02/28/e01f958a1e2e72be248d229c/kabupaten-sragen-dalam-angka-2024.html
Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D., Toll, D. (2004). The global land data assimilation system. Bulletin of the American Meteorological society, 85(3), 381-394. DOI: https://doi.org/10.1175/BAMS-85-3-381
Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418-422. DOI: https://doi.org/10.1038/nature20584
Liu, J., Jiang, L., Zhang, X., Druce, D., Kittel, C. M., Tøttrup, C., Bauer-Gottwein, P. (2021). Impacts of water resources management on land water storage in the North China Plain: Insights from multi-mission earth observations. Journal of Hydrology, 603, 126933. DOI: https://doi.org/10.1016/j.jhydrol.2021.126933
Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical research letters, 37(20). DOI: https://doi.org/10.1029/2010GL044571
Gleeson, T., Wada, Y., Bierkens, M. F., Van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197-200. DOI: https://doi.org/10.1038/nature11295

This work is licensed under a Creative Commons Attribution 4.0 International License.
