Analysis of filtration and electrical properties anisotropy of terrigenous reservoir rocks (for DDB axial zone reservoirs)
Abstract
The paper focuses on the filtration and electrical anisotropy coefficients and relationship between vertical and horizontal permeability in sandstone reservoir rocks.
Field case study of DDB reservoir rocks. Petrophysical properties and parameters are estimated from core and log data from a Moscovian and Serpukhovian stages of Dnipro-Donetsk Basin (West-Shebelynka area well 701-Bis and South-Kolomak area well 31).
Routine core analysis included estimation of absolute permeability, open porosity, irreducible water saturation and electrical resistivity (on dry and saturated by mineralized solution) of 40 core samples along two orthogonal directions. Shale fraction is estimated using well logging data in wells which are analyzed.
The authors report that reservoir rocks are represented by compacted poor-porous (φ <10 %), low permeable (k<1mD) laminated sandstone with different ratios of clay minerals (Vsh from 0,03 to 0,7) and high volume of micaceous minerals (in some cases 20-30 %).
Research theory. One of the main objectives of the work is to develop empirical correlation between vertical permeability and other capacitive and filtration properties for compacted sandstone reservoirs. A modified Kozeny-Carman equation and the concept of hydraulic average radius form the basis for the technique.
Results. Coefficients of the anisotropy of gas permeability (IA) and electrical resistivity (λ) are defined based on the results of petrophysical studies. The experiments proved that IA lies in a range from 0,49 to 5 and λ from 0,77 to 1,06. Permeability and electrical resistivity anisotropy in most cases have horizontal distribution.
It has been shown that in West-Shebelynka area sample №1 (depth 4933 m) there is probably no fluids flow in vertical direction and in samples №№3 and 15 fractures have the vertical orientation.
We have also found that the values of electrical and filtration anisotropy for all samples of South-Kolomak area are similar, this characterized the unidirectionality in their filtration properties, as well as the fact that the motion of the fluid flow mainly in the horizontal direction.
In the studied rocks the degree of anisotropy has been concluded to depend on the volume of clay and micaceous minerals, their stratification, fractures, density, and their orientation.
New correlation between vertical permeability, horizontal permeability and effective porosity are developed for Late Carboniferous DDB intervals that are analyzed.
Downloads
References
Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., & Keelan, D. K. (1993). Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. In SPE annual technical conference and exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/26436-MS
Anikeev, D. P., & Tsagan-Mandzhiev, T. N. (2018). Determination of permeability anisotropy from hydrodynamic well testing studies. Aktualnye Problemy Nefti i Gaza, 2(21). https://doi.org/10.29222/ipng.2078-5712.2018-21.art15 [In Russian].
Ayan, C., Colley, N., Cowan, G., Ezekwe, E., Wannell, M., Goode, P., & Halford, F. (1994). Measuring permeability anisotropy: The latest approach. Oilfield Review, 6(4), 24–35.
Bezrodna, I., & Antoniuk, V. (2018). Estimation of Moscovian Stage West-Shebelynka area clastic sedimentary rock reservoir properties using laboratory petrophysical data. Visnyk of Taras Shevchenko National University of Kyiv: Geology, 2(81), 34–38. https://doi.org/10.17721/1728-2713.81.05 [In Ukrainian].
Bezrodna, I., Antoniuk, V., & Shynkarenko, A. (2018). Analysis of electrical and filtration properties anisotropy of the compacted reservoir rocks of Moscovian stage (West-Shebelynka area). In 17th International Conference on Geoinformatics-Theoretical and Applied Aspects. https://doi.org/10.3997/2214-4609.201801763 [In Ukrainian].
Darling, T. (2005). Well logging and formation evaluation. Elsevier.
Georgi, D., Bespalov, A., Tabarovsky, L., & Schoen, J. (2002). On the relationship between resistivity and permeabil-ity anisotropy. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. https://doi.org/10.2523/77715-MS
Gurbatova, I. P., Plotnikov, V. V., Popov, N. A., & Sysoev, I. V. (2013). Peculiarities of filtration characteristics re-search of the oriented core from complex carbonate reservoirs. Perm Journal of Petroleum and Mining Engineer-ing, (9). http://dx.doi.org/10.15593/2224-9923/2013.9.9 [In Russian].
Hagiwara, T. (2016). On estimation of permeability anisotropy from resistivity anisotropy. In SEG Technical Pro-gram Expanded Abstracts 2016 (pp. 5693–5697). Society of Exploration Geophysicists. https://doi.org/10.1190/segam2016-13174233.1
Iheanacho, P. C., Tiab, D., & Igbokoyi, A. O. (2012). Vertical-Horizontal Permeability Relationships for Sandstone Reservoirs. In Nigeria Annual International Conference and Exhibition, 6-8 August, Lagos, Nigeria (pp. 1–8). SPE. https://doi.org/10.2118/163011-MS
Irayani, Z., Fauzi, U., & Latief, F. D. E. (2015). Permeability anisotropy of layering rock model. In AIP Conference Proceedings (Vol. 1656). AIP Publishing. https://doi.org/10.1063/1.4917135
Karpenko, O. M., Shniukov, S. Y., & Virshylo, I. V. (2011). Prospects for oil and gas bearing areas of the northern board and south-eastern submerged part of the Dnipro-Donets depression. Zvit z NDR, Kyiv. [In Ukrainian].
Kotiakhov, F. I. (1977). Physics of oil and gas reservoirs. Nedra. Moskow. [In Russian].
Maslov, B. P., & Prodaivoda, H. T. (1999). Dispersion and scattering of elastic waves in a fractured geological environment. Geophysical Journal, 20(2), 47–56. [In Russian].
Prodaivoda, H. T., Baisarovych, I. M., Bezrodna, I. M., & Prodaivoda, T. H. (2008). A new method for mathematical modeling of carbonate collectors effective permeability. Geophysical Journal, 30(1), 118–124. [In Russian].
Rasolofosaon, P. N. J., & Zinszner, B. E. (2002). Comparison between permeability anisotropy and elasticity ani-sotropy of reservoir rocks. Geophysics, 67(1), 230–240. https://doi.org/10.1190/1.1451647
Shedid, S. A. (2019). Vertical-horizontal permeability correlations using coring data. Egyptian Journal of Petro-leum. https://doi.org/10.1016/j.ejpe.2018.12.007
Smehov, E. M., Gorjunov, I. I., & Romm, E. S. (1959). Opyt metodicheskih issledovanij treshhinnyh kollektorov nefti i gaza i puti ih prakticheskogo primenenija. Tr. VNIGRI, (144). [In Russian].
Solano, N. A., Soroush, M., Clarkson, C. R., Krause, F. F., & Jensen, J. L. (2017). Modeling core-scale permeability anisotropy in highly bioturbated “tight oil” reservoir rocks. Computational Geosciences, 21(3), 567–593. https://doi.org/10.1007/s10596-017-9635-2
Tiab, D., & Donaldson, E. C. (2015). Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties: Fourth Edition. Elsevier.
Zahaf, K., & Tiab, D. (2002). Vertical permeability from in situ horizontal measurements in shaly-sand reservoirs. Journal of Canadian Petroleum Technology, 41(08). https://doi.org/10.2118/02-08-01
Copyright (c) 2019 Безродна І. М., Антонюк В. В., Олійник О. В.
This work is licensed under a Creative Commons Attribution 4.0 International License.