МОЛЕКУЛЯРНО-ДИНАМІЧНЕ ДОСЛІДЖЕННЯ КОМПЛЕКСІВ ЦИТОХРОМУ С З ЛІПІДАМИ

  • V. Trusova Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University4 Svobody Sq., Kharkiv, 61022, Ukraine http://orcid.org/0000-0002-7087-071X
  • G. Gorbenko Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University4 Svobody Sq., Kharkiv, 61022, Ukraine http://orcid.org/0000-0002-0954-5053
  • U. Tarabara Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University4 Svobody Sq., Kharkiv, 61022, Ukraine https://orcid.org/0000-0002-7677-0779
  • K. Vus Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University4 Svobody Sq., Kharkiv, 61022, Ukraine http://orcid.org/0000-0003-4738-4016
  • O. Ryzhova Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University4 Svobody Sq., Kharkiv, 61022, Ukraine http://orcid.org/0000-0001-9554-0090
Ключові слова: цитохром с, білок-ліпідні взаємодії, амілоїд, молекулярна динаміка

Анотація

Методом молекулярної динаміки досліджено взаємодію мітохондріального гемопротеїну цитохрому с з модельними мембранами, що складались із цвіттеріонного ліпіду фосфатидилхоліну (ФХ) та аніонних ліпідів фосфатидилгліцерину (ФГ), фосфатидилсерину (ФС) чи кардіоліпіну (КЛ). Показано, що структура цитохрому с залишається практично незмінною у комплексах білка з ФХ/ФГ чи ФХ/ФС бішарами. У свою чергу, зв’язування білка із ФХ/КЛ бішарами супроводжується збільшенням радіусу інерції та середньоквадратичних флуктуацій цитохрому с. Продемонстровано, що величина цих змін зростає із вмістом аніонного ліпіду. Винайдені ефекти були інтерпретовані у рамках часткового розгортання поліпептидного ланцюга в області Ala15-Leu32, розширення гемового карману та посилення конформаційних флуктуацій на ділянці Pro76-Asp93 при зростанні молярної частки КЛ від 5 до 25%. Отримані результати важливі у контексті амілоїдогенної здатності цитохрому с.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

1. Chiti F., Dobson C.M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade // Annu. Rev. Biochem. – 2017. – Vol. 86. – P. 27-68.

2. Kelly J.W. Towards an understanding of amyloidogenesis // Nat. Struct. Biol. – 2002. – Vol. 9. – P. 323-325.

3. Zbilut J.P., Colosimo A., Conti F., Colafranceschi M., Manetti C., Valerio M., Webber Jr. C. L., Giuliani A. Protein aggregation/folding: the role of deterministic singularities of sequence hydrophobicity as determined by nonlinear signal analysis of acylphosphatase and Aβ (1-40) // Biophys. J. – 2003. – Vol. 85. – P. 3544-3557.

4. Seelig J. Thermodynamics of lipid-peptide interactions // Biochim. Biophys. Acta. – 2004. – Vol. 1666. – P. 40-50.

5. Gsponer J., Vendruscolo M. Theoretical approaches to protein aggregation // Protein Pept. Lett. – 2006. – Vol. 13. – P. 287-293.

6. Dill K. A. Dominant forces in protein folding // Biochemistry. – 1990. – Vol. 29. – P. 7133-7155.

7. Bokvist M., Lindstrom F., Watts A., Grobner G. Two types of Alzheimer’s β-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation // J. Mol. Biol. – 2004. – Vol. 335. – P. 1039–1049.

8. Sharp J.S., Forrest J.A., Jones R.A.L. Surface denaturation and amyloid fibril formation of insulin at model lipid-water interfaces // Biochemistry – 2002. – Vol. 41. – P. 15810–15819.

9. Zhao H., Jutila A., Nurminen T., Wickstrom S.A., Keski-Oja J., Kinnunen P.K.J. Binding of endostatin to phosphatidylserine-containing membranes and formation of amyloid-like fibers // Biochemistry. – 2005. – Vol. 44. – P. 2857–2863.

10. Jo E., Darabie A.A., Han K., Tandon A., Frazer P.E., McLaurin J. α-synuclein – synaptosomal membrane interactions. Implications for fibrillogenesis // Eur. J. Biochem. – 2004. – Vol. 271. – P. 3180–3189.

11. Knight J.D., Miranker A.D. Phospholipid catalysis of diabetic amyloid assembly // J. Mol. Biol. – 2004. – Vol. 341. – P. 1175–1187.

12. Chirita C.N., Necula M., Kuret J. Anionic micelles and vesicles induce tau fibrillization in vitro // J. Biol. Chem. – 2003. – Vol. 278. – P. 25644–25650.

13. Zhao H., Tuominen E.K.J., Kinnunen P.K.J. Formation of amyloid fibers triggered by phosphatidylserine-containing membranes // Biochemistry. – 2003. – Vol. 43. – P. 10302–10307.

14. Uversky V.N., Fink A.L. Conformational constraints for amyloid fibrillation: the importance of being unfolded // Biochim. Biophys. Acta. – 2004. – Vol. 1698. – P. 131–153.

15. Gorbenko G. P., Kinnunen P. K. J. The role of lipid-protein interactions in amyloid-type protein fibril formation // Chem. Phys. Lipids. – 2006. – Vol. 141. – P. 72-82.

16. Wei G., Mousseau N., Derreumaux P. Computational simulations of early steps of protein aggregation // Prion. – 2007. – Vol. 1. – P. 3-8.

17. Avila C., Drechsel N., Alcantara R., Viila-Freixa J. Multiscale molecular dynamics of protein aggregation // Current Protein and Peptide Science. – 2011. – Vol. 12. – P. 221-234.

18. Beck D., Daggett V. Methods for molecular dynamics simulations of protein folding/unfolding in solution // Methods. – 2004. – Vol. 34. – P. 112-120.

19. Miao Y., Feixas F., Eun C., McCammon J.A. Accelerated molecular dynamics simulations of protein folding // J. Computat. Chem. – 2015. – Vol. 36. – P. 1536-1549.

20. Lemkul J.A., Bevan D.R. Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics // J. Phys. Chem. B. – 2010. – Vol. 114. – P. 1652-1660.

21. Diaz-Moreno I., Garcia-Heredia J.M., Diaz-Quitana A., De la Rosa M.A. Cytochrome c signalosome in mitochondria // Eur. Biophys. J. – 2011. – Vol. 40. – P. 1301–1315.

22. Goodsell D.S. The molecular perspective: cytochrome c and apoptosis // The Oncologist. – 2004. – Vol. 9. – P. 226–227.

23. Haldar S., Sil P., Thangamuniyandi M., Chattopadhyay K. Conversion of amyloid fibrils of cytochrome c to mature nanorods through a honeycomb morphology // Langmuir. – 2015. – Vol. 31. – P. 4213–4223.

24. Groot N.S., Ventura S. Amyloid fibril formation by bovine cytochrome c // Spectroscopy. – 2005. – Vol. 19. – P. 199–205.

25. Furkan M., Fazili N.A., Afsar M., Naeem A. Analysing cytochrome c aggregation and fibrillation upon interaction with acetonitrile: an in vitro study // J. Fluoresc. – 2016. – Vol. 26. – P. 1959–1966.

26. Hashimoto M., Takeda A., Hsu L.J., Takenouchi T., Masliah E. Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease // J. Biol. Chem. – 1999. – Vol. 274. – P. 28849−28852.

27. Huang J., MacKerell A. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data // J. Comput. Chem. – 2013. – Vol. 34. – P. 2135–2145.

28. Lomize M., Pogozheva I., Joo H., Mosberg H., Lomize A. OPM database and PPM web server: resources for positioning of proteins in membranes // Nucl. Acids Res. – 2012. – Vol. 40. – P. 370–376.

29. Jo S., Lim J., Klauda J., Im W. CHARMM-GUI Membrane builder for mixed bilayers and its application to yeast membranes // Biophys. J. – 2009. – Vol. 97. – P. 50–58.

30. Darden T., York D., Pedersen L. Particle mesh Ewald: An N log(N) method for Ewald sums in large systems // J. Chem. Phys. – 1993. – Vol. 98. – P. 10089–10092.

31. Vehlow C., Stehr H., Winkelmann M., Duarte J., Petzold L., Dinse J., Lappe M. CMView: Interactive contact map visualization and analysis // Bioinformatics. – 2011. – Vol. 27. – P. 1573–1574.

32. Cortese J.D., Voglino A.L., Hackenbrock C.R. Multiple conformations of physiological membrane-bound cytochrome c // Biochemistry. – 1998. – Vol. 37. – P. 6402−6409.

33. Lewis R.N.A., McElhaney R.N. The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes // Biochim. Biophys. Acta. – 2009. – Vol. 1788. – P. 2069–2079.

34. Rytömaa M., Kinnunen P.K.J. Evidence for two distinct acidic phospholipid-binding sites in cytochrome c // J. Biol. Chem. – 1994. – Vol. 269. – P. 1770–1774.

35. Rytömaa M., Mustonen P., Kinnunen P.K.J. Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes // J. Biol. Chem. – 1992. – Vol. 267. – P. 22243–22248.

36. Kalanhni E., Wallace C.J.A. Cytochrome c impaled: investigation of the extended lipid anchorage of a soluble protein to mitochondrial membrane models // Biochem. J. – 2007. – Vol. 407. – P. 179–187.

37. Sinibaldi F., Howes B.D., Droghetti E., Polticelli F., Piro M.C., Di Pierro D., Fiorucci L., Coletta M., Smulevich G., Santucci R. Role of lysines in cytochrome c–cardiolipin interaction // Biochemistry. – 2013. – Vol. 52. – P. 4578–4588.

38. Hanske J., Toffey J.R., Morenz A.M., Bonilla A.J., Schiavoni K.H., Pletneva E.V. Conformational properties of cardiolipin-bound cytochrome c // Proc. Natl. Acad. Sci. USA. – 2012. – Vol. 109. – P. 125–130.

39. Muenzner J., Pletneva E. Structural transformations of cytochrome c upon interaction with cardiolipin // Chem. Phys. Lipids. – 2014. – Vol. 179. – P. 57–63.

40. Pandiscia L.A., Schweitzer-Stenner R. Coexistence of native-like and non-native partially unfolded ferricytochrome c on the surface of cardiolipin-containing liposomes // J. Biol. Chem. B. – 2015. – Vol. 119. – P. 1334–1349.

41. Pinheiro T.J.T., Watts A. Lipid specificity in the interaction of cytochrome c with anionic phospholipid bilayers revealed by solid-state 31P NMR // Biochemistry. – 1994. – Vol. 33. – P. 2451–2458.

42. Pinheiro T.J.T., Cheng H., Seeholzer S.H., Roder H. Direct evidence for the cooperative unfolding of cytochrome c in lipid membranes from H-2H exchange kinetics // J. Mol. Biol. – 2003. – Vol. 303. – P. 617–626.

43. Belikova N.A., Vladimirov Y.A., Osipov A.N., Kapralov A.A., Tyurin V.A., Potapovich M.V., Basova L.V., Peterson J., Kurnikov I.V., Kagan V.E. Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes // Biochemistry. – 2006. – Vol. 45. – P. 4998–5009.

44. Hong Y., Muenzner J., Grimm S.K., Pletneva E.V. Origin of the conformational heterogeneity of cardiolipin-bound cytochrome c // J. Amer. Chem. Soc. – 2012. – Vol. 134. – P. 18713–18723.

45. Brown L., Wuthrich K. NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles // Biochim. Biophys. Acta. – 1977. – Vol. 468. – P. 389–410.

46. De Kruijff B., Cullis P.R. Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes // Biochim. Biophys. Acta. – 1980. – Vol. 602. – P. 477–490.

47. Bergstrom C.L., Beales P.A., Lv Y., Vanderlick T.K., Groves J.T. Cytochrome c causes pore formation in cardiolipin-containing membranes // Proc. Natl. Acad. Sci. USA. – 2013. – Vol. 110. – P. 6269–6274.

48. Spooner P.J.R., Watts A. Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 2. Evidence from phosphorus-31 NMR measurements // Biochemistry. – 1991. – Vol. 30. – P. 3880–3885.

49. Stepanov G., Gnedenko O., Mol’nar A., Ivanov A., Vladimirov Y., Osipov A. Evaluation of cytochrome c affinity to anionic phospholipids by means of surface plasmon resonance // FEBS Lett. – 2009. – Vol. 583. – P. 97–100.

50. Pinheiro T.J.T. The interaction of horse heart cytochrome c with phospholipid bilayers. Structural and dynamic effects // Biochimie. – 1994. – Vol. 76. – P. 489–500.

51. Hildebrandt P., Heimburg T., Marsh D. Quantitative conformational analysis of cytochrome c bound to phospholipid vesicles studied by resonance Raman spectroscopy // Eur. Biophys. J. – 1990. – Vol. 18. – P. 193–201.

52. Heimburg T., Hildebrandt P., Marsh D. Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and lipid bilayer // Biochemistry. – 1991. – Vol. 30. – P. 9084–9089.

53. Muenzner J., Toffey J., Hong Y., Pletneva E. Becoming a peroxidase: cardiolipin-induced unfolding of cytochrome c // J. Phys. Chem. B. – 2013. – Vol. 117. – P. 12878–12886.

54. Mandal A., Hoop C., DeLucia M., Kodali R., Kagan V., Ahn J., Wel P. Structural changes and proapoptotic peroxidase activity of cardiolipin-bound mitochondrial cytochrome c // Biophys. J. – 2015. – Vol. 109. – P. 1873–1884.

55. O’Brien E., Nucci N., Fuglestad B., Tommos C., Wand A.J. Defining the apoptotic trigger the interaction of cytochrome c and cardiolipin // J. Biol. Chem. – 2015. – Vol. 290. – P. 30879–30887.

56. Balakrishnan G., Hu Y., Spiro T. His26 protonation in cytochrome c triggers microsecond β-sheet formation and heme exposure: implications for apoptosis // J. Am. Chem. Soc. – 2012. – Vol. 134. – P. 19061–19069.

57. Bandi S., Bowler B. Probing the dynamics of a His73–heme alkaline transition in a destabilized variant of yeast iso-1-cytochrome c with conformationally gated electron transfer methods // Biochemistry. – 2011. – Vol. 50. – P. 10027–10040.

Цитування

Molecular Dynamics Simulation of the Interaction Between Benzanthrone Dye and Model Lipid Membranes
(2020) East European Journal of Physics
Crossref

Опубліковано
2017-10-20
Цитовано
Як цитувати
Trusova, V., Gorbenko, G., Tarabara, U., Vus, K., & Ryzhova, O. (2017). МОЛЕКУЛЯРНО-ДИНАМІЧНЕ ДОСЛІДЖЕННЯ КОМПЛЕКСІВ ЦИТОХРОМУ С З ЛІПІДАМИ. Східно-європейський фізичний журнал, 4(3), 54-62. https://doi.org/10.26565/2312-4334-2017-3-08