MODELIZATION OF AMYLOID FIBRIL SELF-ASSEMBLY

  • V. Trusova Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University4 Svobody Sq., Kharkiv, 61022, Ukraine http://orcid.org/0000-0002-7087-071X
  • G. Gorbenko Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University4 Svobody Sq., Kharkiv, 61022, Ukraine http://orcid.org/0000-0002-0954-5053
Keywords: amyloid fibrils, misfolding, mathematical models, amyloid diseases, nanomaterials

Abstract

Intermolecular noncovalent interactions between protein molecules result in the formation of a wide spectrum of supramolecular assemblies the structure of which varies from disordered amorphous aggregates to the crystals with strictly defined translational symmetry in three directions. One-dimensional protein aggregates (amyloid fibrils) represent highly ordered semiflexible polymers with unique mesoscopic properties which can be tuned by both intrinsic physicochemical characteristics of polypeptide chain and milieu conditions. In the present work the molecular mechanisms of amyloid formation are discussed and mathematical description of the existing models of protein fibrillization are given. For disease-related amyloids, deeper understanding of fibril growth process may shed light on the pathogenesis and molecular mechanisms of the disorders, as well as on the strategies of amyloidosis prevention at atomistic level. In the context of nanotechnology and functional material science, knowing the details of amyloid formation is crucially required for the design of novel nanomaterials with unprecedented qualities.

Downloads

Download data is not yet available.

References

1. Chiti F., Dobson C.M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade // Annu. Rev. Biochem.-2017.-Vol. 86.- P. 27-68.

2. Harrison R.S., Sharpe P.C., Singh Y., Fairlie D.P. Amyloid peptides and protein in review // Rev. Physiol. Biochem. Pharmacol. – 2007. – Vol. 159. – P. 1-77.

3. Pham C.L.L., Kwan A.H., Sunde M. Functional amyloid: widespread in nature, diverse in purpose // Essays Biochem. – 2014. – Vol. 56. – P. 207-219.

4. Maji S., Schubert D., Rivier C., Lee S., Rivier J., Riek R. Amyloid as a depot for the formulation of long-acting drugs // PLoS Biol. – 2008. – Vol. 6. - P. e17.

5. Mankar S., Anoop A., Sen S., Maji S. Nanomaterials: amyloid reflect their brighter side // Nano Rev. – 2011. – Vol. 2. – P. 6032-6043.

6. Luthey-Schulten Z., Wolynes P. Theory of protein folding: the energy landscape perspective // Annu. Rev. Phys. Chem. – 1997. – Vol. 48. – P. 545-600.

7. Ferreiro D., Hegler J., Komives E., Wolynes P. On the role of frustration in the energy landscapes of allosteric proteins // Proc. Natl. Acad. Sci. USA. – 2011. – Vol. 108. – P. 3499-3503.

8. Straub J.E., Thirumalai D. Toward a molecular theory of early and late events in monomer to amyloid fibril formation // Annu. Rev. Phys. Chem. – 2011. – Vol. 62. – P. 437-463.

9. Bowerman C., Ryan D., Nissan D., Nilsson B. The effect of increasing hydrophobicity on the self-assembly of amphipathic beta-sheet peptides // Mol. Biosyst. – 2009. – Vol. 5. – P. 1058-1069.

10. Doran T., Kamens A., Byrnes N., Nilsson B. Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP (20-29) amyloid self-assembly // Proteins. – 2012. – Vol. 80. – P. 1053-1065.

11. Lim K.H., Naqchowdhuri P., Rathinavelan T., Im W. NMR characterization of hydrophobic collapses in amyloidogenic unfolded states and their implications for amyloid formation // Biochem. Biophys. Res. Commun. – 2010. – Vol. 396. – P. 800 805.

12. Ramakrishna D., Prasad M., Bhuyan A. Hydrophobic collapse overrides Coulombic repulsion in ferricytochrome c fibrillation under extremely alkaline condition // Arch. Biochem. Biophys. – 2012. – Vol. 528. – P. 67-71.

13. Marek P., Abedini A., Song B., Kanungo M., Johnson M., Gupta R., Zaman W., Wong S., Raleigh D. Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology // Biochemistry. – 2007. – Vol. 46. – P. 3255-3261.

14. Gazit E. A possible role for pi-stacking in the self-assembly of amyloid fibrils // FASEB J. – 2002. – Vol. 16. – P. 77-83.

15. Marshall K., Morris K., Charlton D., O’Reilly N., Lewis L., Walden H., Serpell L.C. Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability // Biochemistry. – 2011. – Vol. 50. – P. 2061-2071.

16. Girych M., Gorbenko G., Trusova V., Adachi E., Mizuguchi C., Nagao K., Kawashima H., Akaji K., Lund-Katz S., Philips M., Saito H. Interaction of thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: resonance energy transfer study // J. Struct. Biol. – 2014. – Vol. 185. – P. 16-124.

17. Guest W., Cashman N., Plotkin S. Biochem. Electrostatics in the stability and misfolding of the prion protein: salt bridges, self-energy, and solvation // Cell Biol. – 2010. – Vol. 88. – P. 371-381.

18. Yun S., Urbanc B., Cruz L., Bitan G., Teplow D., Stanley H. Role of electrostatic interactions in amyloid β-protein (Aβ) oligomer formation: a discrete molecular dynamics study // Biophys. J. – 2007. – Vol. 92. – P. 4064-4077.

19. Gilliam J., MacPhee C. Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth // J. Phys. Condens. Matter. – 2013. – Vol. 25. – P. 373101-373120.

20. Oosawa F., Asakura S., Hotta K., Nobuhisa I., Ooi T. G-F transformation of actin as a fibrous condensation // J. Polymer Sci. – 1959. – Vol. 37. – P. 323-336.

21. Jarrett J., Lansbury P. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? // Cell. – 1993. – Vol. 73. – P. 1055-1058.

22. Flyvbjerg H., Jobs E., Leibler S. Kinetics of self-assembling microtubules: an “inverse problem” in biochemistry // Proc. Natl. Acad. Sci. USA. – 1996. – Vol. 93. – P. 5975-5979.

23. Lomakin A., Chung D., Benedek G., Kirschner D., Teplow D. On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantification of rate constants // Proc. Natl. Acad. Sci. USA. – 1996. – Vol. 93. – P. 1125-1129.

24. Griffith J. Self-replication and scrapie // Nature. – 1967. – Vol. 215. – P. 1043-1044.

25. Ferrone F., Hofrichter J., Ferrone F.A., Hofrichter J., Sunshine H.R., Eaton W.A. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism // Biophys. J. – 1980. – Vol. 32. – P. 361-377.

26. Prusiner S. Molecular biology of prion diseases // Science. – 1991. – Vol. 252. – P. 1515-1522.

27. Kodaka M. Requirements for generating sigmoidal time-course aggregation in nucleation-dependent polymerization model // Biophys. Chem. – 2004. – Vol. 107. – P. 243-253.

28. Ferrone F. Analysis of protein aggregation kinetics // Methods Enzymol. – 1999. – Vol. 309. – P. 256-274.

29. Serio T., Cashikar A., Kowal A., Sawicki G., Moslehi J., Serpell L., Arnsdorf M., Lindquist S. Nucleated conformational conversion and the replication of conformational information by a prion determinant // Science. – 2000. – Vol. 289. – P. 1317 1321.

30. Kamishira M., Naito A., Tuzi S., Nosaka A., Saitȏ H. Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR // Protein Sci. – 2000. – Vol. 9. – P. 867-877.

31. Pallito M., Murphy R. A mathematical model of the kinetics of beta-amyloid fibril growth from the denaturated state // Biophys. J. – 2001. – Vol. 81. – P. 1805-1822.

32. Xu S., Bevis B., Arnsdorf M. The assembly of amyloidogenic yeast sup35 as assessed by scanning (atomic) force microscopy: an analogy of linear colloidal aggregation? // Biophys. J. – 2001. – Vol. 81. – P. 446-454.

33. Chiti F., Stefani M., Taddei N., Ramponi G., Dobson C. Rationalization of the effects of mutations on peptide and protein aggregation rates // Nature. – 2003. – Vol. 424. – P. 805-808.

34. van Gestel J., de Leeuw S. A statistical-mechanical theory of fibril formation in dilute protein solutions // Biophys. J. – 2006. – Vol. 90. – P. 3134-3145.

35. Li M., Klimov D., Straub J., Thirumalai D. Probing the mechanisms of fibril formation using lattice models // J. Chem. Phys. – 2008. – Vol. 129. – P. 175101-175110.

36. Schmit J., Ghosh K., Dill K. What drives amyloid molecules to assemble into oligomers and fibrils? // Biophys. J. – 2011. – Vol. 100. – P. 450-458.

37. Foderà V., Zaccone A., Lattuada M., Donald A. Electrostatics controls the formation of amyloid superstructures in protein aggregation // Phys. Rev. Lett. – 2013. – Vol. 111. – P. 108105-108109.

38. Di Michele L., Eiser E., Foderà V. Minimal model for self-catalysis in the formation of amyloid-like elongated fibrils // J. Phys. Chem. Lett. – 2013. – Vol. 4. – P. 3158-3164.

39. Auer S. Amyloid fibril nucleation: effect of amino acid hydrophobicity // J. Phys. Chem. B. – 2014. – Vol. 118. – P. 5289-5299.

Citations

Chitosan Oligosaccharides Attenuate Amyloid Formation of hIAPP and Protect Pancreatic β-Cells from Cytotoxicity
Meng Qin-Yu, Wang Hua, Cui Zi-Bo, Yu Wen-Gong & Lu Xin-Zhi (2020) Molecules
Crossref

Published
2018-04-03
Cited
How to Cite
Trusova, V., & Gorbenko, G. (2018). MODELIZATION OF AMYLOID FIBRIL SELF-ASSEMBLY. East European Journal of Physics, 5(1), 47-54. https://doi.org/10.26565/2312-4334-2018-1-05