THE SOLUTION OF ONE CLASS OF EQUATIONS WITH FRACTIONAL SPATIAL DERIVATIVE

  • L. V. Tanatarov National Science Center “Kharkov Institute of Physics and Technology” 1, Akademicheskaya Str., Kharkov 61108, Ukraine
  • V. Yu. Gonchar National Science Center “Kharkov Institute of Physics and Technology” 1, Akademicheskaya Str., Kharkov 61108, Ukraine
  • A. I. Kirdin National Science Center “Kharkov Institute of Physics and Technology” 1, Akademicheskaya Str., Kharkov 61108, Ukraine

Анотація

The equations of particle motion were analytically solved using model Levy flight for the probability density of finding a particle in the given interval, the average particle residence time in this interval, and the particle probability to leave this interval by the given moment. The solution is presented in an arbitrary orthogonal system of functions. This representation provides additional opportunities for studies of systems with anomalous diffusion in a variety of practical applications.

Завантаження

##plugins.generic.usageStats.noStats##

Біографія автора

A. I. Kirdin, National Science Center “Kharkov Institute of Physics and Technology” 1, Akademicheskaya Str., Kharkov 61108, Ukraine

Посилання

Metzler R., Chechkin A.V., Klafter J. Levy Statistics and Anomalous Transport: Levy Flights and Subdiffusion. In: Encyclopedia of Complexity and System Science, edited by R. Mayers. Springer Science + Business Media, LLC, New York, 2009. - P. 1724-1745.

Mohammed A.M.S., Koh Y.R., Vermeersch B., Lu H., Burke P.G., Gossard A.C., and Shakouri A. Fractal Lévy Heat Transport in Nanoparticle Embedded Semiconductor Alloys // Nano Lett. – 2015. - Vol. 15. – No 7. – P. 4269–4273.

Chechkin A., Metzler R., Klafter J., Gonchar V. Introduction to the Theory of Levy Flights. In: R. Klages, G. Radons, I.M. Sokolov (Eds), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim, 2008. - P. 129 - 162.

Zolotarev V.M., Uchajkin V.V., Saenko V.V. Superdiffuzija i ustojchivje zakony // ZhETF. – 1999. - Tom. 115. - Vyp. 4. - S. 1411-1425. (in Russian)

Gitterman M. Mean first passage time for anomalous diffusion // Phys. Rev. E. – 2000. - Vol. 62. - P. 6065-6070.

Titchmarsh E.Ch. Vvedenie v teoriju integralov Fur’e. Moskva-Leningrad: OGIZ, 1948. – 418 s. (in Russian)

Smirnov V.I. Kurs vysshej matematiki. Tom 4. Moskva-Leningrad: GITTL, 1951. – 804 s. (in Russian)

Gakhov F.D. Kraevye zadachi. Moskva: Gos. izd. fiz.-mat. lit., 1958. – 545 s. (in Russian)

Sokhotskiy Yu.V. Ob opredelennykh integralakh i funktsiyakh, upotrebljaemykh pri razlozhenijakh v rjady. Sankt-Peterburg, 1873. (in Russian)

Metzler R., Chechkin A.V., Gonchar V.Yu., Klafter R. Some fundamental aspect of Levy flights // Chaos, Solutions and Fractals. – 2007. – Vol. 34. – P. 129-142.

Uizem J. Linejnye i nelinejnye volny. - Moskva: Izdatel’stvo Mir, 1977. – 624 s. (in Russian)

Gradshtejn I.S., Ryzhyk I.M. Tablitsy integralov, summ, rjadov i proizvedenij. 4-e izd. – Moskva: Fizmatgiz, 1963. - 1100 s. (in Russian)

Zumofen G., Klafter J. Absorbing boundary in one-dimensional anomalous transport // Phys. Rev. E. – 1995. - Vol. 51. - P. 2805-2814.

Evgrafov M.A. Analiticheskie funktsii. - Moskva: Izdatel’stvo «Nauka», 1968. – 471 s. (in Russian)

Опубліковано
2015-11-23
Цитовано
Як цитувати
Tanatarov, L. V., Gonchar, V. Y., & Kirdin, A. I. (2015). THE SOLUTION OF ONE CLASS OF EQUATIONS WITH FRACTIONAL SPATIAL DERIVATIVE. Східно-європейський фізичний журнал, 2(3), 26-39. https://doi.org/10.26565/2312-4334-2015-3-04