THE SOLUTION OF ONE CLASS OF EQUATIONS WITH FRACTIONAL SPATIAL DERIVATIVE
Abstract
The equations of particle motion were analytically solved using model Levy flight for the probability density of finding a particle in the given interval, the average particle residence time in this interval, and the particle probability to leave this interval by the given moment. The solution is presented in an arbitrary orthogonal system of functions. This representation provides additional opportunities for studies of systems with anomalous diffusion in a variety of practical applications.Downloads
References
Metzler R., Chechkin A.V., Klafter J. Levy Statistics and Anomalous Transport: Levy Flights and Subdiffusion. In: Encyclopedia of Complexity and System Science, edited by R. Mayers. Springer Science + Business Media, LLC, New York, 2009. - P. 1724-1745.
Mohammed A.M.S., Koh Y.R., Vermeersch B., Lu H., Burke P.G., Gossard A.C., and Shakouri A. Fractal Lévy Heat Transport in Nanoparticle Embedded Semiconductor Alloys // Nano Lett. – 2015. - Vol. 15. – No 7. – P. 4269–4273.
Chechkin A., Metzler R., Klafter J., Gonchar V. Introduction to the Theory of Levy Flights. In: R. Klages, G. Radons, I.M. Sokolov (Eds), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim, 2008. - P. 129 - 162.
Zolotarev V.M., Uchajkin V.V., Saenko V.V. Superdiffuzija i ustojchivje zakony // ZhETF. – 1999. - Tom. 115. - Vyp. 4. - S. 1411-1425. (in Russian)
Gitterman M. Mean first passage time for anomalous diffusion // Phys. Rev. E. – 2000. - Vol. 62. - P. 6065-6070.
Titchmarsh E.Ch. Vvedenie v teoriju integralov Fur’e. Moskva-Leningrad: OGIZ, 1948. – 418 s. (in Russian)
Smirnov V.I. Kurs vysshej matematiki. Tom 4. Moskva-Leningrad: GITTL, 1951. – 804 s. (in Russian)
Gakhov F.D. Kraevye zadachi. Moskva: Gos. izd. fiz.-mat. lit., 1958. – 545 s. (in Russian)
Sokhotskiy Yu.V. Ob opredelennykh integralakh i funktsiyakh, upotrebljaemykh pri razlozhenijakh v rjady. Sankt-Peterburg, 1873. (in Russian)
Metzler R., Chechkin A.V., Gonchar V.Yu., Klafter R. Some fundamental aspect of Levy flights // Chaos, Solutions and Fractals. – 2007. – Vol. 34. – P. 129-142.
Uizem J. Linejnye i nelinejnye volny. - Moskva: Izdatel’stvo Mir, 1977. – 624 s. (in Russian)
Gradshtejn I.S., Ryzhyk I.M. Tablitsy integralov, summ, rjadov i proizvedenij. 4-e izd. – Moskva: Fizmatgiz, 1963. - 1100 s. (in Russian)
Zumofen G., Klafter J. Absorbing boundary in one-dimensional anomalous transport // Phys. Rev. E. – 1995. - Vol. 51. - P. 2805-2814.
Evgrafov M.A. Analiticheskie funktsii. - Moskva: Izdatel’stvo «Nauka», 1968. – 471 s. (in Russian)
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).