Effect of Cobalt Doping on the Structural, Morphological, Optical, and Magnetic Properties of ZnO Thin Films Prepared by Ultrasonic Spray Pyrolysis

  • Z. Daas Thin Films and Interfaces Laboratory, Constantine 1- Frères Mentouri University, Constantine, Algeria
  • A. Bouabellou Thin Films and Interfaces Laboratory, Constantine 1- Frères Mentouri University, Constantine, Algeria https://orcid.org/0009-0009-0854-9616
  • K. Daas Laboratory of Mathematics and Their Interactions, Boussouf Abdelhafid University Center, Mila, Algeria
  • D. Belfennache Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria https://orcid.org/0000-0002-4908-6058
  • K. Benzouai Thin Films and Interfaces Laboratory, Constantine 1- Frères Mentouri University, Constantine, Algeria
  • M. Mahtali Thin Films and Interfaces Laboratory, Constantine 1- Frères Mentouri University, Constantine, Algeria
  • R. Yekhlef Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria
Keywords: Spray Technique, ZnO Thin Films, Cobalt doping, RAMAN, Diluted Magnetic Semiconductors (DMS)

Abstract

Zinc-cobalt oxide (Zn1−xCoxO) thin films refer to a semiconductor material based on zinc oxide (ZnO) doped with cobalt (Co). This material is studied mainly for its modified magnetic, electronic and optical properties, particularly in the context of diluted magnetic semiconductors (DMS). This study analyzes the effect of cobalt doping on the structural optical, and magnetic properties of ZnO thin films, fabricated using alow-cost, scalable ultrasonic spray technique. Zinc-cobalt oxide (Zn1−xCoxO) thin films were successfully deposited on glass substrates using the ultrasonic spray pyrolysis technique at a substrate tem- perature of 450 ◦C, with cobalt doping concentrations of x = 0%, 1%, 3%, and 5%. X-ray diffraction (XRD) analysis revealed a hexagonal wurtzite structure for all samples, with no secondary phases, indicating effective incorporation of Co2+ ions into the ZnO lattice. Raman spectroscopy indicated the emergence of structural disorder and defect-related modes, consistent with the increase in Urbach energy. Scanning electron microscopy (SEM) showed granular surface morphologies, and a non-homogeneous surface pattern is visible on all samples. Atomic Force Microscopy (AFM) showed an increase in surface roughness and grain size with increasing doping concentration. Optical measurements confirmed high transmittance in the visible range and a gradual de- crease in optical band gap from 3.21 eV to 2.95 eV with increasing Co content. The spectroscopy, and vibrating sample magnetometer (VSM) revealed that all films are intrinsically ferromagnetic. The origin of the ferromagnetism was found to be an intrinsic property of the Co-doped ZnO thin films.

Downloads

Download data is not yet available.

References

M. Vali, and A. Bayani, Mat Sci Semicon Proc. 195, 109599 (2025). https://doi.org/10.1016/j.mssp.2025.109599

Y. Sun, T. Wang, J. Luo, J. Chen, W. Huang, and J. Ding, Mater. Today Electron. 12, 100151 (2025). https://doi.org/10.1016/j.mtelec.2025.100151

D. Belfennache, D. Madi, N. Brihi, M.S. Aida, and M.A. Saeed, Appl. Phys. A, 124, 697 (2018). https://doi.org/10.1007/s00339-018-2118-z

I. Hanif, and I. Iatsunskyi, Int. J. Hydrog. Energy, 109, 174 (2025). https://doi.org/10.1016/j.ijhydene.2025.01.491

R. Ouldamer, D. Belfennache, D. Madi, R. Yekhlef, S. Zaiou, and M.A. Ali, J. Ovonic. Res. 20(1), 45 (2024). https://doi.org/10.15251/JOR.2024.201.45

Y. Benkrima, S. Benhamida, and D. Belfennache, Dig. J. Nanomater. Bios. 18(1), 11 (2023) https://doi.org/10.15251/DJNB.2023.181.11

Y. Benkrima, M.E. Soudani, D. Belfennache, H. Bouguettaia, and A. Souigat, J. Ovonic. Res. 18(6), 797 (2022). https://doi.org/10.15251/JOR.2022.186.797

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, et al., J. Appl. Phys. 98(4), 041301 https://doi.org/10.1063/1.1992666

R. Kurniawan, I.M. Sutjahja, T. Winata, T. S. Herng, J. Ding, A. Rusydi, and Y. Darma, Opt. Mater. Express, 7(11), 3902 (2017). https://doi.org/10.1364/OME.7.003902

L. Wang, Comput. Methods Appl. Mech. Eng. 445, 118205 (2025). https://doi.org/10.1016/j.cma.2025.118205

Z. Wang, Q. Chen, Z. Qi, Z. Song, Z. Wang, B. Cao, S. Pan, J. Pang, and W. Wang, Intermetallics, 185, 108886 (2025). https://doi.org/10.1016/j.intermet.2025.108886

D. Belfennache, N. Brihi, and D. Madi, Proceeding of the IEEE xplore, 8th (ICMIC) (2016). 7804164, 497–502 (2017). https://doi.org/10.1109/ICMIC.2016.7804164

Y. Benkrima, D. Belfennache, R. Yekhlef, and A. M. Ghaleb, Chalcogenide Lett. 20(8), 609-618 (2023). https://doi.org/10.15251/CL.2023.208.609

M. Shkir, Mater. Sci. Eng. B, 284, 115861 (2022). https://doi.org/10.1016/j.mseb.2022.115861

S.D. Lokhande, H.A. Varudkar, M.B. Awale, L.H. Kathwate, J.S. Dargad, and V.D. Mote, Materials Letters, 337, 133919 (2023). https://doi.org/10.1016/j.matlet.2023.133919

F. Hadji, Y. Rassim, D. Belfennache, R. Yekhlef, N. Bounar, M.A. Bradai, M. Hemdan, and M.A Ali, Egypt. J. Chem. 68, 63 (2025). https://doi.org/10.21608/ejchem.2024.283147.9600

O.A. Akinwumi, K.O. Olumurewa, A.T. Famojuro, and O.O. Akinwunmi, Next Materials, 8, 100883 (2025). https://doi.org/10.1016/j.nxmate.2025.100883

S. Mahdid, D. Belfennache , D. Madi, M. Samah, R. Yekhlef, and Y. Benkrima,. J. Ovonic. Res. 19(5), 535-545 (2023). https://doi.org/10.15251/JOR.2023.195.535.

R. Ouldamer, D. Madi, and D. Belfennache, in: Advanced Computational Techniques for Renewable Energy Systems, IC-AIRES, 2022, Lecture Notes in Networks and Systems, 591, edited by M. Hatti, (Springer, Cham. 2023). pp. 700-705. https://doi.org/10.1007/978-3-031-21216-1_71

F. Saker, L. Remache, D. Belfennache, K.R. Chebouki, and R. Yekhlef, Chalcogenide Letters, 22(2), 151 (2025). https://doi.org/10.15251/CL.2025.222.151

R.C. Greenhalgh, A. Abbas, V. Kornienko, and J.M. Walls, Sol. Energy Mater. Sol. Cells, 292, 113742 (2025). https://doi.org/10.1016/j.solmat.2025.113742

Y. Bellal, A. Bouhank, D. Belfennache, R. Yekhlef, East Eur. J. Phys, (1), 170-176 (2025).

https://doi.org/10.26565/2312-4334-2025-1-16

N.K. Singh, V. Koutu, and M.M. Malik, J. Sol-Gel Sci. Technol. 91, 324 (2019). https://doi.org/10.1007/s10971-019-05004-4

I. Djerdj, Z. Jagliˇci´c, D. Arˇcon, and M. Niederberger, Nano scale, 2(7), 1096 (2010). https://doi.org/10.1039/c0nr00148a

U. Godavarti, V.D. Mote, and M. Dasari, J. Asian Ceram. Soc. 5, 391 (2017). https://doi.org/10.1016/j.jascer.2017.08.002

L. Vegard, Zeitschrift für Physik, 5(1), 17 (1921). http://dx.doi.org/10.1007/BF01349680

S. Roguai, and A. Djelloul, Appl. Phys. A: Mater. Sci. Process. 125(12), 1 (2019). https://doi.org/10.1007/s00339-019-3118-3

M. Bouloudenine, N. Viart, S. Colis, J. Kortus, and A. Dinia, Appl. Phys. Lett. 87, 05250 (2005). https://doi.org/10.1063/1.2001739

A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.K. Jaganathan, R. Ladchumananandasivam, M. Henini, et al., J. Alloys Compd. 723, 1155 (2017). https://doi.org/10.1016/j.jallcom.2017.06.336

I.S. Yahia, A.A.M. Farag, M. Cavas, and M.F. Yakuphanoglu, Superlattices Microstruct. 53, 63 (2013). https://doi.org/10.1016/j.spmi.2012.09.008

A.C. Gandhi, W.S. Yeoh, M.A. Wu, C.H. Liao, D.Y. Chiu, W.L. Yeh, and Y.L., Huang, Nanomaterials, 8(8), 632 (2018). https://doi.org/10.3390/nano8080632

G. Scamarcio, V. Spagnolo, G. Ventruti, M. Lugara, and M.G.C. Righini, Phys. Rev. B, 53, R10489 (1996). https://doi.org/10.1103/PhysRevB.53.R10489

A.K. Ojha, M. Srivastava, S. Kumar, R. Hassanein, J. Singh, M.K. Singh, and A. Materny, Vib. Spectrosc. 72, 90 (2014). https://doi.org/10.1016/j.vibspec.2014.02.013

W. Chebil, Indian Journal of Pure & Applied Physics, (IJPAP), 53(8), 521-529 (2015).

M. Soylu, and M. Coskun, J. Alloys. Compd. 741, 957 (2018). https://doi.org/10.1016/j.jallcom.2018.01.079

C.Y. Tsay, K.S. Fan, Y.W. Wang, C.J. Chang, Y.K. Tseng, and C.K. Lin, Ceramics International, 36(6), 1791 (2010). https://doi.org/10.1016/j.ceramint.2010.03.005

J. Li, D. Yang, and X. Zhu, Materials technology, 33(3), 198 (2018). https://doi.org/10.1080/10667857.2017.1396775

C.Y. Tsay, K.S. Fan, S.H. Chen, and C.H. Tsai, J. Alloys. Compds. 495(1), 126 (2010). https://doi.org/10.1016/j.jallcom.2010.01.100

J. Li, X. Zhu, P. Gu, X, Zhang, X. Li, Y. Chen, and D. Yang, Materials Technology, 34(2), 80 (2018). https://doi.org/10.1080/10667857.2018.1523086

N. Kaneva, A. Bojinova, K. Papazova, D. Dimitrov, I. Svinyarov, and M. Bogdanov, Bulg. Chem. Commun. 47, 395 (2015).

M. Yilmaz, and A. Şakir, Mater. Sci. Semicond. Process, 40, 162 (2015). https://doi.org/10.1016/j.mssp.2015.06.064

A. Maache, A.Chergui, D. Djouadi, B. Benhaoua, A. Chelouche, and M. Boudissa, Optik, 180, 1018 (2019). https://doi.org/10.1016/j.ijleo.2018.11.002

J. Singh, Optical Properties of Condensed Matter and Applications, vol. 6, (John Wiley & Sons, 2006). https://doi.org/10.1002/0470021942

N. Shakti, and P.S. Gupta, Appl. Phys. Res. 2(1), 19 (2010) https://doi.org/10.5539/apr.v2n1p19

A.A. Aboud, M. Shaban, and N. Revaprasadu, RSC Adv. 9(14), 7729 (2019). https://doi.org/10.1039/c8ra10599e

S. Yang, B.Y. Man, M. Liu, C.S. Chen, X.G. Gao, C.C. Wang, and B. Hu, Phys. B: Condens. Matter, 405(18), 4027 (2010). https://doi.org/10.1016/j.physb.2010.06.050

C. Song, F. Zeng, K.W. Geng, X.B. Wang, Y.X. Shen, and F. Pan, J. Magn. Magn Mater. 309(1), 25 (2007). https://doi.org/10.1016/j.jmmm.2006.06.012

E. Gungor, T. Gungor, D. Caliskan, A. Ceylan, and E. Ozbay, Appl. Surf. Sci. 318, 309 (2014). https://doi.org/10.1016/j.apsusc.2014.06.132

M. Ivill, S.J. Pearton, S. Rawal, L. Leu, P. Sadik, R. Das, A.F. Hebard, et al., New J. Phys. 10(6), 065002 (2008). https://doi.org/10.1088/1367-2630/10/6/065002

A.C. Tuan, et al., Phys. Rev. B, 70, 054424 (2004). https://doi.org/10.1103/PhysRevB.70.054424

B.K. Ridley, Quantum Processes in Semiconductors, 5th edn. (Oxford, 2013). https://doi.org/10.1093/acprof:oso/9780199677214.001.0001

S.H. Deng, M.Y. Duan, M. Xu, and L. He, Physica B: Condensed Matter, 406(11), 2314 (2011). https://doi.org/10.1016/j.physb.2011.03.067

A. Salah, A.M. Saad, and A.A. Aboud, Optical Materials, 113, 110812 (2021). https://doi.org/10.1016/j.optmat.2021.110812

A.T. Naziba, M.T. Nafisa, R. Sultana, Md.F. Ehsan, A.R.M. Tareq, R. Rashid, H. Das, et al., J. Magn. Magn. Mater, 593, 171836 (2024). https://doi.org/10.1016/j.jmmm.2024.171836

R.A. Torquato, S.E. Shirsath, R.H.G.A. Kiminami, and A.C.F.M. Costa, Ceramics International, 44(4), 4126 (2018). https://doi.org/10.1016/j.ceramint.2017.11.213

M. Zhong, W. Wu, H. Wu, and S. Guo, J. Alloys. Compds, 765, 69 (2018). https://doi.org/10.1016/j.jallcom.2018.06.228

J.K. Park, K.W. Lee, S.J. Noh, H.S. Kim, and C.E. Lee, Curr. Appl. Phys. 14(2), 206 (2014). https://doi.org/10.1016/j.cap.2013.11.004

B. Salameh, A.M. Alsmadi, and M. Shatnawi, J. Alloys. Compds. 835, 155287 (2020). https://doi.org/10.1016/j.jallcom.2020.155287

N.C. Mamani, J. Alloys. Compds. 695, 2682 (2017). https://doi.org/10.1016/j.jallcom.2016.11.183

S. Ramasubramanian, R. Thangavel, M. Rajagopalan, A. Thamizhavel, K. Asokan, D. Kanjilal, and J. Kumar, Curr. Appl. Phys. 13, 1547 (2013). https://doi.org/10.1016/j.cap.2013.05.010

Dhruvashi, and P.K. Shishodia, Thin Solid Films, 612, 55 (2016). https://doi.org/10.1016/j.tsf.2016.05.028

X.J. Liu, C. Song, P.Y. Yang, F. Zeng, and F. Pan, Appl. Surf. Sci. 254, 3167 (2008). https://doi.org/10.1016/j.apsusc.2007.10.078

W. Zhuliang, L. Xiaoli, J. Fengxian, T. Baoqiang, L. Baohua, and X. Xiaohong, Rare. Metal. Mat. Eng. 37(5), 0831 (2008). https://doi.org/10.1016/S1875-5372(09)60021-7

H.-J. Lee, S.-Y. Jeong, C. Cho, and C. Park, Appl. Phys. Lett. 81, 4020 (2002). https://doi.org/10.1063/1.1517405

C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, and J.M.D. Coey, Appl. Surf. Sci. 247, 493 (2005). https://doi.org/10.1016/j.apsusc.2005.01.043

L.S. Dorneles, M. Venkatesan, R. Gunning, P. Stamenov, J. Alaria, M. Rooney, J.G. Lunney, and J.M.D. Coey, J. Magn. Magn. Mater. 310, 2087 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1017

A. Zukova, A. Teiserskis, V. Kazlauskiene, Y.K. Gun’ko, and S. Dijken, J. Magn. Magn. Mater. 316, e203 (2007). https://doi.org/10.1016/j.jmmm.2007.02.090

J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, and W.K. Choo, J. App. Phys. 92, 6066 (2002). https://doi.org/10.1063/1.1513890

R.K. Singhal, A. Samariya, Y.T. Xing, S. Kumar, S.N. Dolia, U.P. Deshpande, T. Shripathi, and E.B. Saitovitch, J. Alloys. Compd. 496, 324 (2010). https://doi.org/10.1016/j.jallcom.2010.02.005

Published
2025-09-08
Cited
How to Cite
Daas, Z., Bouabellou, A., Daas, K., Belfennache, D., Benzouai, K., Mahtali, M., & Yekhlef, R. (2025). Effect of Cobalt Doping on the Structural, Morphological, Optical, and Magnetic Properties of ZnO Thin Films Prepared by Ultrasonic Spray Pyrolysis. East European Journal of Physics, (3), 286-297. https://doi.org/10.26565/2312-4334-2025-3-26