Effect of Cobalt Doping on the Structural, Morphological, Optical, and Magnetic Properties of ZnO Thin Films Prepared by Ultrasonic Spray Pyrolysis
Abstract
Zinc-cobalt oxide (Zn1−xCoxO) thin films refer to a semiconductor material based on zinc oxide (ZnO) doped with cobalt (Co). This material is studied mainly for its modified magnetic, electronic and optical properties, particularly in the context of diluted magnetic semiconductors (DMS). This study analyzes the effect of cobalt doping on the structural optical, and magnetic properties of ZnO thin films, fabricated using alow-cost, scalable ultrasonic spray technique. Zinc-cobalt oxide (Zn1−xCoxO) thin films were successfully deposited on glass substrates using the ultrasonic spray pyrolysis technique at a substrate tem- perature of 450 ◦C, with cobalt doping concentrations of x = 0%, 1%, 3%, and 5%. X-ray diffraction (XRD) analysis revealed a hexagonal wurtzite structure for all samples, with no secondary phases, indicating effective incorporation of Co2+ ions into the ZnO lattice. Raman spectroscopy indicated the emergence of structural disorder and defect-related modes, consistent with the increase in Urbach energy. Scanning electron microscopy (SEM) showed granular surface morphologies, and a non-homogeneous surface pattern is visible on all samples. Atomic Force Microscopy (AFM) showed an increase in surface roughness and grain size with increasing doping concentration. Optical measurements confirmed high transmittance in the visible range and a gradual de- crease in optical band gap from 3.21 eV to 2.95 eV with increasing Co content. The spectroscopy, and vibrating sample magnetometer (VSM) revealed that all films are intrinsically ferromagnetic. The origin of the ferromagnetism was found to be an intrinsic property of the Co-doped ZnO thin films.
Downloads
References
M. Vali, and A. Bayani, Mat Sci Semicon Proc. 195, 109599 (2025). https://doi.org/10.1016/j.mssp.2025.109599
Y. Sun, T. Wang, J. Luo, J. Chen, W. Huang, and J. Ding, Mater. Today Electron. 12, 100151 (2025). https://doi.org/10.1016/j.mtelec.2025.100151
D. Belfennache, D. Madi, N. Brihi, M.S. Aida, and M.A. Saeed, Appl. Phys. A, 124, 697 (2018). https://doi.org/10.1007/s00339-018-2118-z
I. Hanif, and I. Iatsunskyi, Int. J. Hydrog. Energy, 109, 174 (2025). https://doi.org/10.1016/j.ijhydene.2025.01.491
R. Ouldamer, D. Belfennache, D. Madi, R. Yekhlef, S. Zaiou, and M.A. Ali, J. Ovonic. Res. 20(1), 45 (2024). https://doi.org/10.15251/JOR.2024.201.45
Y. Benkrima, S. Benhamida, and D. Belfennache, Dig. J. Nanomater. Bios. 18(1), 11 (2023) https://doi.org/10.15251/DJNB.2023.181.11
Y. Benkrima, M.E. Soudani, D. Belfennache, H. Bouguettaia, and A. Souigat, J. Ovonic. Res. 18(6), 797 (2022). https://doi.org/10.15251/JOR.2022.186.797
Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, et al., J. Appl. Phys. 98(4), 041301 https://doi.org/10.1063/1.1992666
R. Kurniawan, I.M. Sutjahja, T. Winata, T. S. Herng, J. Ding, A. Rusydi, and Y. Darma, Opt. Mater. Express, 7(11), 3902 (2017). https://doi.org/10.1364/OME.7.003902
L. Wang, Comput. Methods Appl. Mech. Eng. 445, 118205 (2025). https://doi.org/10.1016/j.cma.2025.118205
Z. Wang, Q. Chen, Z. Qi, Z. Song, Z. Wang, B. Cao, S. Pan, J. Pang, and W. Wang, Intermetallics, 185, 108886 (2025). https://doi.org/10.1016/j.intermet.2025.108886
D. Belfennache, N. Brihi, and D. Madi, Proceeding of the IEEE xplore, 8th (ICMIC) (2016). 7804164, 497–502 (2017). https://doi.org/10.1109/ICMIC.2016.7804164
Y. Benkrima, D. Belfennache, R. Yekhlef, and A. M. Ghaleb, Chalcogenide Lett. 20(8), 609-618 (2023). https://doi.org/10.15251/CL.2023.208.609
M. Shkir, Mater. Sci. Eng. B, 284, 115861 (2022). https://doi.org/10.1016/j.mseb.2022.115861
S.D. Lokhande, H.A. Varudkar, M.B. Awale, L.H. Kathwate, J.S. Dargad, and V.D. Mote, Materials Letters, 337, 133919 (2023). https://doi.org/10.1016/j.matlet.2023.133919
F. Hadji, Y. Rassim, D. Belfennache, R. Yekhlef, N. Bounar, M.A. Bradai, M. Hemdan, and M.A Ali, Egypt. J. Chem. 68, 63 (2025). https://doi.org/10.21608/ejchem.2024.283147.9600
O.A. Akinwumi, K.O. Olumurewa, A.T. Famojuro, and O.O. Akinwunmi, Next Materials, 8, 100883 (2025). https://doi.org/10.1016/j.nxmate.2025.100883
S. Mahdid, D. Belfennache , D. Madi, M. Samah, R. Yekhlef, and Y. Benkrima,. J. Ovonic. Res. 19(5), 535-545 (2023). https://doi.org/10.15251/JOR.2023.195.535.
R. Ouldamer, D. Madi, and D. Belfennache, in: Advanced Computational Techniques for Renewable Energy Systems, IC-AIRES, 2022, Lecture Notes in Networks and Systems, 591, edited by M. Hatti, (Springer, Cham. 2023). pp. 700-705. https://doi.org/10.1007/978-3-031-21216-1_71
F. Saker, L. Remache, D. Belfennache, K.R. Chebouki, and R. Yekhlef, Chalcogenide Letters, 22(2), 151 (2025). https://doi.org/10.15251/CL.2025.222.151
R.C. Greenhalgh, A. Abbas, V. Kornienko, and J.M. Walls, Sol. Energy Mater. Sol. Cells, 292, 113742 (2025). https://doi.org/10.1016/j.solmat.2025.113742
Y. Bellal, A. Bouhank, D. Belfennache, R. Yekhlef, East Eur. J. Phys, (1), 170-176 (2025).
https://doi.org/10.26565/2312-4334-2025-1-16
N.K. Singh, V. Koutu, and M.M. Malik, J. Sol-Gel Sci. Technol. 91, 324 (2019). https://doi.org/10.1007/s10971-019-05004-4
I. Djerdj, Z. Jagliˇci´c, D. Arˇcon, and M. Niederberger, Nano scale, 2(7), 1096 (2010). https://doi.org/10.1039/c0nr00148a
U. Godavarti, V.D. Mote, and M. Dasari, J. Asian Ceram. Soc. 5, 391 (2017). https://doi.org/10.1016/j.jascer.2017.08.002
L. Vegard, Zeitschrift für Physik, 5(1), 17 (1921). http://dx.doi.org/10.1007/BF01349680
S. Roguai, and A. Djelloul, Appl. Phys. A: Mater. Sci. Process. 125(12), 1 (2019). https://doi.org/10.1007/s00339-019-3118-3
M. Bouloudenine, N. Viart, S. Colis, J. Kortus, and A. Dinia, Appl. Phys. Lett. 87, 05250 (2005). https://doi.org/10.1063/1.2001739
A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.K. Jaganathan, R. Ladchumananandasivam, M. Henini, et al., J. Alloys Compd. 723, 1155 (2017). https://doi.org/10.1016/j.jallcom.2017.06.336
I.S. Yahia, A.A.M. Farag, M. Cavas, and M.F. Yakuphanoglu, Superlattices Microstruct. 53, 63 (2013). https://doi.org/10.1016/j.spmi.2012.09.008
A.C. Gandhi, W.S. Yeoh, M.A. Wu, C.H. Liao, D.Y. Chiu, W.L. Yeh, and Y.L., Huang, Nanomaterials, 8(8), 632 (2018). https://doi.org/10.3390/nano8080632
G. Scamarcio, V. Spagnolo, G. Ventruti, M. Lugara, and M.G.C. Righini, Phys. Rev. B, 53, R10489 (1996). https://doi.org/10.1103/PhysRevB.53.R10489
A.K. Ojha, M. Srivastava, S. Kumar, R. Hassanein, J. Singh, M.K. Singh, and A. Materny, Vib. Spectrosc. 72, 90 (2014). https://doi.org/10.1016/j.vibspec.2014.02.013
W. Chebil, Indian Journal of Pure & Applied Physics, (IJPAP), 53(8), 521-529 (2015).
M. Soylu, and M. Coskun, J. Alloys. Compd. 741, 957 (2018). https://doi.org/10.1016/j.jallcom.2018.01.079
C.Y. Tsay, K.S. Fan, Y.W. Wang, C.J. Chang, Y.K. Tseng, and C.K. Lin, Ceramics International, 36(6), 1791 (2010). https://doi.org/10.1016/j.ceramint.2010.03.005
J. Li, D. Yang, and X. Zhu, Materials technology, 33(3), 198 (2018). https://doi.org/10.1080/10667857.2017.1396775
C.Y. Tsay, K.S. Fan, S.H. Chen, and C.H. Tsai, J. Alloys. Compds. 495(1), 126 (2010). https://doi.org/10.1016/j.jallcom.2010.01.100
J. Li, X. Zhu, P. Gu, X, Zhang, X. Li, Y. Chen, and D. Yang, Materials Technology, 34(2), 80 (2018). https://doi.org/10.1080/10667857.2018.1523086
N. Kaneva, A. Bojinova, K. Papazova, D. Dimitrov, I. Svinyarov, and M. Bogdanov, Bulg. Chem. Commun. 47, 395 (2015).
M. Yilmaz, and A. Şakir, Mater. Sci. Semicond. Process, 40, 162 (2015). https://doi.org/10.1016/j.mssp.2015.06.064
A. Maache, A.Chergui, D. Djouadi, B. Benhaoua, A. Chelouche, and M. Boudissa, Optik, 180, 1018 (2019). https://doi.org/10.1016/j.ijleo.2018.11.002
J. Singh, Optical Properties of Condensed Matter and Applications, vol. 6, (John Wiley & Sons, 2006). https://doi.org/10.1002/0470021942
N. Shakti, and P.S. Gupta, Appl. Phys. Res. 2(1), 19 (2010) https://doi.org/10.5539/apr.v2n1p19
A.A. Aboud, M. Shaban, and N. Revaprasadu, RSC Adv. 9(14), 7729 (2019). https://doi.org/10.1039/c8ra10599e
S. Yang, B.Y. Man, M. Liu, C.S. Chen, X.G. Gao, C.C. Wang, and B. Hu, Phys. B: Condens. Matter, 405(18), 4027 (2010). https://doi.org/10.1016/j.physb.2010.06.050
C. Song, F. Zeng, K.W. Geng, X.B. Wang, Y.X. Shen, and F. Pan, J. Magn. Magn Mater. 309(1), 25 (2007). https://doi.org/10.1016/j.jmmm.2006.06.012
E. Gungor, T. Gungor, D. Caliskan, A. Ceylan, and E. Ozbay, Appl. Surf. Sci. 318, 309 (2014). https://doi.org/10.1016/j.apsusc.2014.06.132
M. Ivill, S.J. Pearton, S. Rawal, L. Leu, P. Sadik, R. Das, A.F. Hebard, et al., New J. Phys. 10(6), 065002 (2008). https://doi.org/10.1088/1367-2630/10/6/065002
A.C. Tuan, et al., Phys. Rev. B, 70, 054424 (2004). https://doi.org/10.1103/PhysRevB.70.054424
B.K. Ridley, Quantum Processes in Semiconductors, 5th edn. (Oxford, 2013). https://doi.org/10.1093/acprof:oso/9780199677214.001.0001
S.H. Deng, M.Y. Duan, M. Xu, and L. He, Physica B: Condensed Matter, 406(11), 2314 (2011). https://doi.org/10.1016/j.physb.2011.03.067
A. Salah, A.M. Saad, and A.A. Aboud, Optical Materials, 113, 110812 (2021). https://doi.org/10.1016/j.optmat.2021.110812
A.T. Naziba, M.T. Nafisa, R. Sultana, Md.F. Ehsan, A.R.M. Tareq, R. Rashid, H. Das, et al., J. Magn. Magn. Mater, 593, 171836 (2024). https://doi.org/10.1016/j.jmmm.2024.171836
R.A. Torquato, S.E. Shirsath, R.H.G.A. Kiminami, and A.C.F.M. Costa, Ceramics International, 44(4), 4126 (2018). https://doi.org/10.1016/j.ceramint.2017.11.213
M. Zhong, W. Wu, H. Wu, and S. Guo, J. Alloys. Compds, 765, 69 (2018). https://doi.org/10.1016/j.jallcom.2018.06.228
J.K. Park, K.W. Lee, S.J. Noh, H.S. Kim, and C.E. Lee, Curr. Appl. Phys. 14(2), 206 (2014). https://doi.org/10.1016/j.cap.2013.11.004
B. Salameh, A.M. Alsmadi, and M. Shatnawi, J. Alloys. Compds. 835, 155287 (2020). https://doi.org/10.1016/j.jallcom.2020.155287
N.C. Mamani, J. Alloys. Compds. 695, 2682 (2017). https://doi.org/10.1016/j.jallcom.2016.11.183
S. Ramasubramanian, R. Thangavel, M. Rajagopalan, A. Thamizhavel, K. Asokan, D. Kanjilal, and J. Kumar, Curr. Appl. Phys. 13, 1547 (2013). https://doi.org/10.1016/j.cap.2013.05.010
Dhruvashi, and P.K. Shishodia, Thin Solid Films, 612, 55 (2016). https://doi.org/10.1016/j.tsf.2016.05.028
X.J. Liu, C. Song, P.Y. Yang, F. Zeng, and F. Pan, Appl. Surf. Sci. 254, 3167 (2008). https://doi.org/10.1016/j.apsusc.2007.10.078
W. Zhuliang, L. Xiaoli, J. Fengxian, T. Baoqiang, L. Baohua, and X. Xiaohong, Rare. Metal. Mat. Eng. 37(5), 0831 (2008). https://doi.org/10.1016/S1875-5372(09)60021-7
H.-J. Lee, S.-Y. Jeong, C. Cho, and C. Park, Appl. Phys. Lett. 81, 4020 (2002). https://doi.org/10.1063/1.1517405
C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, and J.M.D. Coey, Appl. Surf. Sci. 247, 493 (2005). https://doi.org/10.1016/j.apsusc.2005.01.043
L.S. Dorneles, M. Venkatesan, R. Gunning, P. Stamenov, J. Alaria, M. Rooney, J.G. Lunney, and J.M.D. Coey, J. Magn. Magn. Mater. 310, 2087 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1017
A. Zukova, A. Teiserskis, V. Kazlauskiene, Y.K. Gun’ko, and S. Dijken, J. Magn. Magn. Mater. 316, e203 (2007). https://doi.org/10.1016/j.jmmm.2007.02.090
J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, and W.K. Choo, J. App. Phys. 92, 6066 (2002). https://doi.org/10.1063/1.1513890
R.K. Singhal, A. Samariya, Y.T. Xing, S. Kumar, S.N. Dolia, U.P. Deshpande, T. Shripathi, and E.B. Saitovitch, J. Alloys. Compd. 496, 324 (2010). https://doi.org/10.1016/j.jallcom.2010.02.005
Copyright (c) 2025 Z. Daas, A. Bouabellou, K. Daas, D. Belfennache, K. Benzouai, M. Mahtali, R. Yekhlef

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



