Повний МГД потік Стефана нанорідини Касона у пористому середовищі за наявності хімічної реакції з ефектом Томпсона, а також Тройан-ковзання по пластині за наявності випромінювання

  • Аніта Діві Редді Департамент математики та комп’ютерних навичок, Центр підготовчого навчання, Університет технології та прикладних наук, Нізва, Султанат Оман
  • Прабхакара Редді Діві Редді Департамент математики та комп’ютерних навичок, Центр підготовчого навчання, Університет технології та прикладних наук, Нізва, Султанат Оман
  • Бхаг’я Лакшмі Кунтумалла Факультет математики, Технічний кампус CMR, Медчал, Хайдерабад, Телангана, Індія
  • Снеха Латха Мадхура Департамент математики Академії менеджменту Самбхрам, Бангалор, Індія; Університет Самбхрам, Джизак, Узбекистан
  • Parandhama Areti Кафедра математики, Інститут аеронавігаційної техніки, Хайдарабад, Телангана, Індія https://orcid.org/0000-0002-7242-895X
Ключові слова: Кассон, ; хімічна реакція, МГД, пористий, випромінювання, Томпсон і Троян ковзання

Анотація

У цій роботі ми повідомляємо про вплив ефекта Томпсона, ковзання Трояна та Стефана на поведінку магнітогідродинамічної (МГД) кассонового нанофлюїду через пористе середовище під час хімічної реакції. Ми також досліджуємо вплив параметрів випромінювання, Джоулевого тепла та розподілу швидкості за допомогою двофазної моделі для нанофлюїдів. Перетворення подібності можна використовувати для перетворення первинних диференціальних рівнянь із частинними похідними (PDE) у звичайні диференціальні рівняння (ODE). Для вирішення нелінійних рівнянь використано алгоритми MATLAB Shooting і Runge-Kutta. Варіації безрозмірних параметрів показують вплив на масообмін, тепло та властивості потоку рідини. Показано, що коефіцієнт поверхневого тертя зменшується зі збільшенням параметра S видування Стефана. Із збільшенням значень параметрів ковзання Томпсона і Трояна концентрація рідини зменшується. Зі збільшенням і k теплота рідини зростає, але її концентрація падає. Результати цього аналізу надають кілька привабливих аспектів, які дадуть можливості для подальшого вивчення проблем.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

S.U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in: Developments and Applications of Non- Newtonian Flows, edited by D.A. Siginer, and H.P. Wang, (ASME, New York, 1995), pp. 99–105.

J.M. Wu, and J. Zhao, “A review of nanofluid heat transfer and critical heat flux enhancement research gap to engineering application,” Progr. Nuclear Energy, 66, 13–24 (2013). https://doi.org/10.1016/j.pnucene.2013.03.009

W. Ibrahim, and O.D. Makinde, The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate, Comput. Fluids, 86, 433–441 (2013). https://doi.org/10.1016/j.compfluid.2013.07.029

P. Singh, and M. Kumar, Mass transfer in MHD flow of alumina water nanofluid over a flat plate under slip conditions, Alex. Eng. J. 54, 383–387 (2015). https://doi.org/10.1016/j.aej.2015.04.005

M. Sheikholeslami, and H.B. Rokni, Simulation of nanofluid heat transfer in the presence of magnetic field: a review, Int. J. Heat Mass Transf. 115, 1203–1233 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.108

U. Farooq, H. Waqas, S.E. Alhazmi, A. Alhushaybari, M. Imran, R. Sadat, T. Muhammad, et al., “Numerical treatment of CassonnanofluidBio convectional flow with heat transfer due to stretching cylinder/plate: Variable physical properties,” Arabian Journal of Chemistry, 16(4), (2023). https://doi.org/10.1016/j.arabjc.2023.104589

K.S.S. Babu, A. Parandhama, and R.B. Vijaya, “Significance of heat source/sink on the radiative flow of Cross nanofluid across an exponentially stretching surface towards a stagnation point with chemical reaction,” Heat Transfer, 51(4), 2885–2904 (2021). https://doi.org/10.1002/htj.22428

K.R. Babu, A. Parandhama, K.V. Raju, M.C. Raju, and P.V.S. Narayana, “Unsteady MHD Free Convective Flow of a Visco-Elastic Fluid Past an Infinite Vertical Porous Moving Plate with Variable Temperature and Concentration,” Int. J. Appl. Comput. Math. 3, 3411–3431 (2017). https://doi.org/10.1007/s40819-017-0306-8

K.S.S. Babu, A. Parandhama, and R.B. Vijaya, “A Numerical Investigation of chemically reacting 2D Williamson fluid over a vertical exponentially stretching surface,” South East Asian J. of Mathematics and Mathematical Sciences, 16(3), 295-310 (2020).

B. Reddappa, A. Parandhama, K. Venkateswara Raju, and S. Sreenadh, “Analysis of the Boundary Layer Flow of Thermally Conducting Jeffrey Fluid over a Stratified Exponentially Stretching Sheet,” Turkish Journal of Computer and Mathematics Education, 12(13), 730-739 (2021). https://doi.org/10.17762/turcomat.v12i13.8469

M.M. Bhatti, and M.M. Rashidi, “Study of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD) peristaltic blood flow under the influence of Hall effect,” Propulsion and Power Research, 6(3), 177-185 (2017). https://doi.org/10.1016/j.jppr.2017.07.006

N. Casson, and C.C. Mill, Rheology of Dispersed System, vol. 84, (Pergamon Press, Oxford, 1959).

W.P. Walwander, T.Y. Chen, and D.F. Cala, “Biorheology, An approximate Casson fluid model for tube flow of blood,” Biorheology, 12, 111-119 (1975). https://doi.org/10.3233/BIR-1975-12202

G.V. Vinogradov, and A.Y. Malkin, Rheology of Polymers, (Mir Publisher, Moscow, 1979). (in Russian)

A. Ali, H. Farooq, Z. Abbas, Z. Bukhari, and A. Fatima, “Impact of Lorentz force on the pulsatile flow of a non-Newtonian Casson fluid in a constricted channel using Darcy's law: a numerical study,” Sci. Rep. 10(1), 10629 (2020). https://doi.org/10.1038/s41598-020-67685-0

A. Majeed, N. Golsanami, B. Gong, Q.A. Ahmad, S. Rifaqat, A. Zeeshan, and F.M. Noori, “Analysis of thermal radiation in magnetohydrodynamic motile gyrotactic micro-organisms flow comprising tiny nanoparticle towards a nonlinear surface with velocity slip,” Alexandria Engineering Journal, 66, 543–553 (2023). https://doi.org/10.1016/j.aej.2022.11.012

M. Sohail, Z. Shah, A. Tassaddiq, P. Kumam, and P. Roy, “Entropy generation in MHD Casson fluid flow with variable heat conductance and thermal conductivity over a non-linear bi-directional stretching surface,” Sci. Rep. 10(1), 12530 (2020). https://doi.org/10.1038/s41598-020-69411-2

C.K. Kumar, and S. Srinivas, “Influence of Joule heating and thermal radiation on unsteady hydromagnetic flow of chemically reacting Casson fluid over an inclined porous stretching sheet,” Spec. Top Rev. Porous Media Int. J. 10(4), 385-400 (2019). https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2019026908

P. Sreenivasulu, T. Poornima, and N.B. Reddy, “Influence of Joule heating and non-linear radiation on MHD 3D dissipating flow of Casson nanofluid past a non-linear stretching sheet,” Nonlinear Eng. 8(1), 661-672 (2019). https://doi.org/10.1515/nleng-2017-0143

H. Kataria, and H. Patel, “Heat and mass transfer in magnetohydrodynamic (MHD) Casson fluid flow past over an oscillating vertical plate embedded in porous medium with ramped wall temperature,” Propulsion and Power Research, 7(3), 257-267 (2018). https://doi.org/10.1016/j.jppr.2018.07.003

K.V. Raju, A. Parandhama, and M. Changalraju, “Induced Magnetic Field And Slip Effects on Non-Linear Convective Casson Fluid Flow Past a Porous Plate Embedded in Porous Medium,” Journal of Xidian University, 14(5), 1334-1343 (2020). http://dx.doi.org/10.37896/jxu14.5/148

I.C. Mandal, and S. Mukhopadhyay, “Nonlinear convection in micropolar fluid flow past an exponentially stretching sheet in an exponentially moving stream with thermal radiation,” Mech. Adv. Mater. Struct. 26(24), 2040-2046 (2019). https://doi.org/10.1080/15376494.2018.1472325

S. Sreenadh, M.M. Rashidi, K.K.S. Naidu, and A. Parandhama, “Free Convection Flow of a Jeffrey Fluid through a Vertical Deformable Porous Stratum,” Journal of Applied Fluid Mechanics, 9(5), 2391-2401 (2016). https://doi.org/10.18869/acadpub.jafm.68.236.25549

T. Fang, and W. Jing, “Flow heat and species transfer over a stretching plate considering coupled Stefan blowing effects from species transfer,” Commun. Nonlinear Sci. Numer. Simul. 19, 3086–3097 (2014). https://doi.org/10.1016/j. cnsns.2014.02.009

R.A. Hamid, R. Nazar, and I. Pop, “Stagnation point flow, heat transfer, and species transfer over a shrinking sheet with coupled Stefan blowing effects from species transfer,” AIP Conf. Proc. 1784, 050005 (2016), https://doi.org/10.1063/1.4966824

L.A. Lund, Z. Omar, J. Raza, I. Khan, and E.S.M. Sherif, “Effects of Stefan blowing and slip conditions on unsteady MHD Casson nanofluid flow over an unsteady shrinking sheet: dual solutions,” Symmetry, 12(3) 487 (2020). https://doi.org/10.3390/sym12030487

P. Rana, V. Makkar, and G. Gupta, “Finite element study of bio-convective Stefan blowing Ag-MgO/water hybrid nanofluid induced by stretching cylinder utilizing non-Fourier and Non-Fick’s Laws,” Nanomaterials, 11, 1735 (2021). https://doi.org/10.3390/nano11071735

R. Ellahi, T. Hayat, F.M. Mahomed, and A. Zeeshan, “Fundamental flows with nonlinear slip conditions: exact solutions,” Z. Angew. Math. Phys. 61, 877–888 (2010). https://doi.org/10.1007/s00033-010-0079-y

P.A. Thompson, and S.M. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature, 389, 360–362 (1997). https://doi.org/10.1038/38686

S. Ahmad, and S. Nadeem, “Flow analysis by Cattaneo–Christov heat flux in the presence of Thompson and Troian slip condition,” Appl. Nanosci. 10, 4673–4687 (2020). https://doi.org/10.1007/s13204-020-01267-4

M. Ramzan, J.D. Chung, S. Kadry, Y.M. Chu, and M. Akhtar, “Nanofluid flow containing carbon nanotubes with quartic autocatalytic chemical reaction and Thompson and Troian slip at the boundary,” Scient. Rep. 10, 18710 (2020). https://doi.org/10.1038/s41598-020-74855-7

S. Nadeem, S. Ahmad, and M.N. Khan, “Mixed convection flow of hybrid nanoparticle along a Riga surface with Thompson and Troian slip condition,” J. Thermal Anal. Calorim. 143, 2099–2109 (2020). https://doi.org/10.1007/s10973-020-09747-z

S. Dey, S. Mukhopadhyay, and M. Begum, “Stefan flow of nanofluid and heat transport over a plate in company of Thompson and Troian slip and uniform shear flow,” Forces in Mechanics, 9, 100129 (2022). https://doi.org/10.1016/j.finmec.2022.100129

H. Blasius, “Grenzschichten in FlussigkeitenmitkleinerReibung,” Z. Math. Phys. 56, 1–37 (1908).

A. Ishak, R. Nazar, and I. Pop, “Flow and heat transfer characteristics on a moving flat plate in a parallel stream with constant surface heat flux,” Heat Mass Transf. 45, 563–567 (2009). https://doi.org/10.1007/s00231-008-0462-9

A.K. Verma, A.K. Gautam, K. Bhattacharyya, A. Banerjee, and A.J. Chamkha, “Boundary layer flow of non-Newtonian Eyring–Powell nanofluid over a moving flat plate in Darcy porous medium with a parallel free-stream: Multiple solutions and stability analysis,” Pramana J. Phys. 173, 95 (2021). https://doi.org/10.1007/s12043-021-02215-9

Опубліковано
2024-09-02
Цитовано
Як цитувати
Редді, А. Д., Редді, П. Р. Д., Кунтумалла, Б. Л., Мадхура, С. Л., & Areti, P. (2024). Повний МГД потік Стефана нанорідини Касона у пористому середовищі за наявності хімічної реакції з ефектом Томпсона, а також Тройан-ковзання по пластині за наявності випромінювання. Східно-європейський фізичний журнал, (3), 236-247. https://doi.org/10.26565/2312-4334-2024-3-23