Голографiчна модель темної енергiї Калуза-Клейна FRW Реньї в скалярно-тензорнiй теорiї гравiтацiї

  • Ю. Собханбабу Iнженерний коледж Сагi Рама Крiшнам Раджу (A), Бхiмаварам, Iндiя https://orcid.org/0000-0003-0717-1323
  • М. Вiджая Сантi Унiверситет Андхра, Вiшакхапатнам, Iндiя https://orcid.org/0000-0002-0050-3033
  • А. Шрiнiваса Рао Унiверситет Андхра, Вiшакхапатнам, Iндiя https://orcid.org/0009-0004-1689-9759
  • М. Правiн Кумар Iнженерний коледж Сагi Рама Крiшнам Раджу (A), Бхiмаварам, Iндiя https://orcid.org/0000-0002-4209-037X
Ключові слова: Калуза-Клейн FRW Всесвiт, RHDE, енергетичнi умови, теорiя Саеза-Баллестера

Анотація

This work examines the dark energy phenomenon by studying the Renyi Holographic Dark Energy (RHDE) and pressure-less Dark Matter (DM) within the frame-work of Saez-Ballester (SB) scalar-tensor theory of gravitation(Phys. Lett. A113, 467:1986). To achieve a solution, we consider the viable deceleration parameter (DP), which contributes to the average scale factor a=e(1/γ)[ √ (2γt+c1)], where γ, and c1 are respectively arbitrary, and integration constants. We have derived the field equations of SB scalar-tensor theory of gravity with the help of Kaluza-Klein FRW Universe. We have investigated cosmological parameters namely, DP (q), energy densities (ρM) and (ρR) of DM and RHDE, scalar field (ϕ), and equation of state parameter (ωR). The physical debate of these cosmological parameters are investigated through graphical presentation. Moreover, the stability of the model are studied through squared sound speed (vs2) and the well-known cosmological plane ωR - ω'R and all energy conditions and also, density parameters are analyzed through graphical representation for our model. 

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

A.G. Riess, et al.: Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter, et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

M. Padmanabhan, Phys. Rep. 380, 235 (2003). https://doi.org/10.1016/S0370-1573(03)00120-0

E.J. Copeland, M. Sami, and S.Tsujikawa, Int. J. Mod. Phys. D, 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X

K. Bamba, et al., Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8

P. Horava, and M. Djordje, Phys. Rev. Lett 85, 1610 (2000). https://doi.org/10.1103/PhysRevLett.85.1610

S. Thomas. Phys. Rev. Lett. 89, 081301 (2002). https://doi.org/10.1103/PhysRevLett.89.081301

S.D.H. Hsu, Phys. Lett. B, 594, 13 (2004). https://doi.org/10.1016/j.physletb.2004.05.020

M. Li, Phys. Lett. B, 603, 1 (2004). http://dx.doi.org/10.1016/j.physletb.2004.10.014

R. D’Agostino, Phys. Rev. D, 99, 103524 (2019). https://doi.org/10.1103/PhysRevD.99.103524

A. Majhi, Phys. Lett. B, 775, 32 (2017). https://doi.org/10.1016/j.physletb.2017.10.043

S. Abe, Phys. Rev. E, 63, 061105 (2001). https://doi.org/10.1103/PhysRevE.63.061105

T.S. Bir´o, and P. V´an, Phys. Rev. E, 83, 061147 (2011). https://doi.org/10.1103/PhysRevE.83.061147

M. Tavayef, A. Sheykhi, et al., Phys. Lett. B, 781, 195 (2018). https://doi.org/10.1016/j.physletb.2018.04.001

K.Y. Kim, H.W. Lee, and Y.S. Myung, Phys. Lett. B, 660, 118 (2008). https://doi.org/10.1016/j.physletb.2007.12.045

I.P. Neupane, Phys. Lett. B, 673, 111 (2009). https://doi.org/10.1016/j.physletb.2009.02.012

O.A. Lemets, D.A. Yerokhin, and L.G. Zazunov, J. Cosmol. Astropart. Phys. 01, 007 (2011). https://doi.org/10.1088/1475-7516/2011/01/007

H. Wei, and R.G. Cai, Phys. Lett. B, 665, 1 (2007). https://doi.org/10.1016/j.physletb.2007.08.066

A. Sheykhi, and M.R. Setare, Int. J. Theor. Phys. 49, 2777 (2010). https://doi.org/10.1007/s10773-010-0469-0

A. R´enyi, Prob. theory. (North-Holland, Amsterdam). 540-616 (1970).

H. Moradpour, A. Sheykhi, et al., Phys. Lett. B, 783, 82 (2018). https://doi.org/10.1016/j.physletb.2018.06.040

H. Moradpour, S. A. Moosavi, et al., Eur. Phys. J. C, 78, 829 (2018). https://doi.org/10.1140/epjc/s10052-018-6309-8

A. Jawad, K. Bamba, et al., Symmetry, 10, 635 (2018). https://doi.org/10.3390/sym10110635

A. Iqbal, and A. Jawad, Phys. Dark Univ. 26, 100349 (2019). https://doi.org/10.1016/j.dark.2019.100349

M. Younas, et al., Adv. High Energy Phys. 1287932, (2019). https://doi.org/10.1155/2019/1287932

A. Dixit, V.K. Bhardwaj, and A. Pradhan, (2020). https://doi.org/10.48550/arXiv.2010.10847

S. Chunlen, and P. Rangdeey, (2020). https://doi.org/10.48550/arXiv.2008.13730

U.K. Sharma and V.C. Dubey, (2020). https://doi.org/10.48550/arXiv.2001.02368

A. Sarfraz, S. Khan, and S. Sattar, (2020). https://arxiv.org/abs/2011.10046v1

U.K. Sharma, and V.C. Dubey, New Astronomy, 80, 101419 (2020). https://doi.org/10.1016/j.newast.2020.101419

A. Saha, et al., (2021). https://arxiv.org/abs/2101.04060v1

U.K. Sharma, and V.C. Dubey, Mod. Phys. Lett. A, 35(34), 2050281 (2021). https://doi.org/10.1142/S0217732320502818

U.Y.D. Prasanthi, and Y. Aditya, Results in Phys. 17, 103101 (2020). https://doi.org/10.1016/j.rinp.2020.103101

S. Bhattacharjee, Astrophys. and Space Sci. 365, 103 (2020). https://doi.org/10.1007/s10509-020-03820-7

M.V. Santhi, and Y. Sobhanbabu, Eur. Phys. J. C, 80, 1198, (2020). https://doi.org/10.1140/epjc/s10052-020-08743-9

Y. Sobhanbabu, and M.V. Santhi, Eur. Phys. J. C, 81, 1040 (2021). https://doi.org/10.1140/epjc/s10052-021-09815-0

U.Y.D. Prasanthi, and Y. Aditya, Phys. Dark Univ. 31, 100782 (2021). https://doi.org/10.1016/j.dark.2021.100782

Y. Sobhanbabu, and M.V. Santhi, Gen. Relativ. Gravit. 54, 95 (2022).

Y. Sobhanbabu, et al., New Astronomy, 104, 102066, (2023). https://doi.org/10.1016/j.newast.2023.102066

D. Saez, and V.J. Ballester, J. Phys. Lett. 113, 467 (1986). https://doi.org/10.1016/0375-9601(86)90121-0

R. Tiwari, R. Singh, and Shukla, Afric. Rev. Phys. B, 10, 0048 (2015). http://aphysrev.ictp.it/index.php/aphysrev/article/download/1137/460

U.K. Sharma, et al., Res. Astron. Astrophys. 19, 055 (2019). https://doi.org/10.1088/1674-4527/19/4/55

L.N. Granda, and A. Oliveros, Phys. Lett. B, 671, 199 (2009). https://doi.org/10.1016/j.physletb.2008.12.025

G. Hinshaw, et al., Astrophys. J. Suppl. 208, 19 (2013). https://doi.org/10.1088/0067-0049/208/2/19

S.W. Hawking, and G.F.R. Ellis, The Large-Scale Structure of Space Time, (Cambridge Unvi. Press, Cambridge, 1973).

R.M. Wald, Generality, (University of Chicago Press, Chicago) (1984).

M. Visser, Science, 276, 88 (1997). https://doi.org/10.1126/science.276.5309.88

C. Molina-Paris, and M. Visser, Phys. Lett. B, 455, 90 (2013). https://doi.org/10.1016/S0370-2693(99)00469-4

T. Singh, et al., Astro. Space Sci. 361, 106 (2016). https://doi.org/10.1007/s10509-016-2696-1

J. Santos, J.S. Alcaniz, et al., Phys. Rev. D, 76, 083513 (2007). https://doi.org/10.1103/PhysRevD.76.083513

E.-A. Kontou, and K. Sanders, (2020). https://arxiv.org/abs/2003.01815v2

U. Alam, et al. Mon. Not. R. Astron. Soc. 344, 1057 (2003). https://doi.org/10.1046/j.1365-8711.2003.06871.x

V. Sahni, et al., JETP Lett. 77, 201 (2003). https://doi.org/10.1134/1.1574831

M. Sharif, and A. Jawad, Eur. Phys. J. C, 73, 2600 (2013). https://doi.org/10.1140/epjc/s10052-013-2600-x

A. Al Mamon, et al., Universe, 7, 362 (2021). https://doi.org/10.3390/universe7100362

R.R. Caldwell, and E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005). https://doi.org/10.1103/PhysRevLett.95.141301

R. Giostri, M. Vargas dos Santos, I. Waga, et al., J. Cosmol. Astropart. Phys. 3, 027 (2012). https://doi.org/10.1088/1475-7516/2012/03/027

N. Aghanim, et al., [Plancks Collaboration], (2018). https://arxiv.org/abs/1807.06209v2

Опубліковано
2024-09-02
Цитовано
Як цитувати
Собханбабу, Ю., СантiМ. В., Рао, А. Ш., & Кумар, М. П. (2024). Голографiчна модель темної енергiї Калуза-Клейна FRW Реньї в скалярно-тензорнiй теорiї гравiтацiї. Східно-європейський фізичний журнал, (3), 10-20. https://doi.org/10.26565/2312-4334-2024-3-01