Порівняльний аналіз плоскої течії Куетта парно напруженої рідини під впливом магнітогідродинаміки

  • Мухаммад Фарук Факультет математики, Університет Абдула Валі Хана, Мардан, Пакистан https://orcid.org/0000-0003-3392-101X
  • Ібрар = Хан Факультет математики, Університет Абдула Валі Хана, Мардан, Пакистан https://orcid.org/0009-0008-2586-9841
  • Рашид Наваз UniSa STEM, Університет Південної Австралії https://orcid.org/0000-0002-4773-8446
  • Гамаль М. Ісмаїл Департамент математики, Факультет природничих наук, Ісламський університет Медіни, Медіна, Саудівська Аравія; Кафедра математики, факультет природничих наук, Університет Сохаг, Сохаг, Єгипет https://orcid.org/0000-0002-9060-4371
  • Хузайфа Умар Близькосхідний університет, Центр оперативних досліджень у сфері охорони здоров’я, Нікосія/Мерсін, Туреччина https://orcid.org/0000-0003-2508-9710
  • Хіджаз Ахмад Близькосхідний університет, Центр оперативних досліджень у сфері охорони здоров’я, Нікосія/Мерсін, Туреччина; Азербайджанський університет, Баку, Азербайджан https://orcid.org/0000-0002-5438-5407
Ключові слова: парно напружена рідина, метод оптимальної допоміжної функції (OAFM), метод гомотопічних збурень (HPM), магнітогідродинаміка (MHD)

Анотація

Це дослідження має на меті виконати порівняльний аналіз плоского потоку Куетта парної напруженої рідини під впливом магнітогідродинаміки (МГД) за допомогою двох різних методів: методу оптимальної допоміжної функції (OAFM) і методу гомотопічних збурень (HPM). Рідина парних напружень відома своєю неньютонівською поведінкою, де реакція рідини на зсув залежить від наявності внутрішньої мікроструктури. OAFM і HPM використовуються для розв’язання керівних рівнянь течії рідини парних напруг під МГД. OAFM — це чисельний метод, який передбачає введення допоміжної функції для спрощення рівнянь, що спрощує процедуру розв’язання. З іншого боку, HPM — це аналітичний метод, який використовує послідовне рішення. Порівняльний аналіз зосереджується на вивченні точності, ефективності та поведінки збіжності двох методів. Для дослідження їх впливу на поведінку потоку розглядаються різні параметри потоку, такі як параметр напруги пари, магнітний параметр і співвідношення швидкостей. Крім того, рішення HPM порівнювали з рішенням OAFM за допомогою різних графіків і таблиць. Це виявило, що рішення, отримане HPM, є кращим, ніж рішення OAFM.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

M.A. Seddeek, "Heat and mass transfer on a stretching sheet with a magnetic eld in a visco-elastic fluid flow through a porous medium with heat source or sink," Computational Materials Science, 38(4), 781-787 (2007). https://doi.org/10.1016/j.commatsci.2006.05.015

M.A. Mansour, M.A. El-Hakiem, and S.M. El Kabeir, "Heat and mass transfer in magnetohydrodynamic flow of micropolar uid on a circular cylinder with uniform heat and mass flux," Journal of Magnetism and Magnetic Materials, 220(2-3), 259-270 (2000). https://doi.org/10.1016/S0304-8853(00)00488-1

O.A. Bég, A.Y. Bakier, V.R. Prasad, J. Zueco, and S.K. Ghosh, "Nonsimilar, laminar, steady, electrically-conducting forced convection liquid metal boundary layer flow with induced magnetic field eects," International Journal of Thermal Sciences, 48(8), 1596-1606 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.12.007

R. Jain, R. Mehta, M.K. Sharma, T. Mehta, H. Ahmad, and F. Tchier, "Numerical analysis of heat and mass transport of hybrid nanouid over an extending plate with inclined magnetic eld in presence of Soret and dufour Effect," Modern Physics Letters B, 6, 2450037 (2023). https://doi.org/10.1142/S0217984924500374

S.F. Megahid, A.E. Abouelregal, H. Ahmad, M.A. Fahmy, and H. Abu-Zinadah, "A generalized More-Gibson-Thomson heat transfer model for the study of thermomagnetic responses in a solid half-space," Results in Physics, 51, 106619 (2023). https://doi.org/10.1016/j.rinp.2023.106619

T. Muhammad, H. Ahmad, U. Farooq, and A. Akgül, "Computational Investigation of Magnetohydrodynamics Boundary of Maxwell Fluid Across Nanoparticle-Filled Sheet," Al-Salam Journal for Engineering and Technology, 2(2), 88-97 (2023). https://doi.org/10.55145/ajest.2023.02.02.011

A.E. Abouelregal, H. Ahmad, M.A. Aldahlan, and X.Z. Zhang, "Nonlocal magneto-thermoelastic infinite half-space due to a periodically varying heat flow under Caputo-Fabrizio fractional derivative heat equation," Open Physics, 20(1), 274-288 (2022). https://doi.org/10.1515/phys-2022-0019

M. Farooq, Z. Ahmad, H. Ahmad, M. Zeb, F. Aouaini, and M. Ayaz, "Homotopy analysis methods with applications to thin-film flow of a magnetohydrodynamic-modified second grade fluid," Modern Physics Letters B, 36(19), 2150617 (2022). https://doi.org/10.1142/S021798492150617X

H. Ahmad, A.E. Abouelregal, M. Benhamed, M.F. Alotaibi, and A. Jendoubi, "Vibration analysis of nanobeams subjected to gradient-type heating due to a static magnetic field under the theory of nonlocal elasticity," Scientific Reports, 12(1), 1894 (2022). https://doi.org/10.1038/s41598-022-05934-0

B. Tashtoush, "Magnetic and buoyancy effects on melting from a vertical plate embedded in saturated porous media," Energy Conversion and Management, 46(15-16), 2566-2577 (2005). https://doi.org/10.1016/j.enconman.2004.12.004

M.F. El-Amin, "Magnetohydrodynamic free convection and mass transfer flow in micropolar fluid with constant suction," Journal of magnetism and magnetic materials, 234(3), 567-574 (2001). https://doi.org/10.1016/S0304-8853(01)00374-2

S. Ahmed, O.A. Bég, and S.K. Ghosh, "A couple stress uid modeling on free convection oscillatory hydromagnetic flow in an inclined rotating channel," Ain Shams Engineering Journal, 5(4), 1249-1265 (2014). https://doi.org/10.1016/j.asej.2014.04.006

A.A. Dar, and K. Elangovan, "Influence of an inclined magnetic eld on Heat and Mass transfer of the peristaltic flow of a couple stress uid in an inclined channel," World Journal of Engineering, 14(1), 7-18 (2017). https://doi.org/10.1108/WJE-11-2016-0124

P.Y. Xiong, M. Nazeer, F. Hussain, M.I. Khan, A. Saleem, S. Qayyum, and Y.M. Chu, "Two-phase flow of couple stress fluid thermally eected slip boundary conditions: Numerical analysis with variable liquids properties," Alexandria Engineering Journal, 61(5), 3821-3830 (2022). https://doi.org/10.1016/j.aej.2021.09.012

O.A. Ajala, L.O. Aselebe, S.F. Abimbade, and A.W. Ogunsola, "Effect of magnetic fields on the boundary layer flow of heat transfer with variable viscosity in the presence of thermal radiation," International Journal of Scientific and Research Publication, 9(5), 13-19 (2019). https://doi.org/10.24297/jam.v12i7.3874

J.A. Falade, S.O. Adesanya, J.C. Ukaegbu, and M.O. Osinowo, "Entropy generation analysis for variable viscous couple stress uid ow through a channel with non-uniform wall temperature," Alexandria Engineering Journal, 55(1), 69-75 (2016). https://doi.org/10.1016/j.aej.2016.01.011

B.V. Swarnalathamma, and M.V. Krishna, "Peristaltic hemodynamic flow of couple stress fluid through a porous medium under the influence of magnetic field with slip effect," In AIP Conference Proceedings, 1728(1), 020603 (2016). https://doi.org/10.1063/1.4946654

K. Ramesh, "Influence of heat and mass transfer on peristaltic ow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channel," Journal of Molecular Liquids, 219, 256-271 (2016). https://doi.org/10.1016/j.molliq.2016.03.010

B.B. Divya, G. Manjunatha, C. Rajashekhar, H. Vaidya, and K.V. Prasad, "Effects of inclined magnetic field and porous medium on peristaltic flow of a Bingham fluid with heat transfer," Journal of Applied and Computational Mechanics, 7(4), 1892-1906 (2021). https://doi.org/10.22055/JACM.2019.31060.1822

T. Hayat, M. Awais, A. Safdar, and A.A. Hendi, "Unsteady three dimensional flow of couple stress fluid over a stretching surface with chemical reaction," Nonlinear Analysis: Modelling and Control, 17(1), 47-59 (2012). https://doi.org/10.15388/NA.17.1.14077

S.T. Mohyud-Din, and M.A. Noor, "Homotopy perturbation method for solving partial differential equations," Zeitschrift für Naturforschung A, 64(3-4), 157-170 (2009). https://doi.org/10.1515/zna-2009-3-402

J. Biazar, and H. Ghazvini, "Convergence of the homotopy perturbation method for partial differential equations," Nonlinear Analysis: RealWorld Applications, 10(5), 2633-2640 (2009). https://doi.org/10.1016/j.nonrwa.2008.07.002

B. Marinca, and V. Marinca, "Approximate analytical solutions for thin film flow of a fourth grade fluid down a vertical cylinder," Proceed Romanian Academy, Series A, 19(1), 69-76 (2018). https://acad.ro/sectii2002/proceedings/doc2018-1/10.pdf

L. Zada, R. Nawaz, M. Ayaz, H. Ahmad, H. Alrabaiah, and Y.M. Chu, "New algorithm for the approximate solution of generalized seventh order Korteweg-Devries equation arising in shallow water waves," Results in Physics, 20, 103744 (2021). https://doi.org/10.1016/j.rinp.2020.103744

S. Islam, and C.Y. Zhou, "Exact solutions for two dimensional ows of couple stress uids," Zeitschrift für angewandte Mathematik und Physik, 58(6), 1035-1048 (2007). https://doi.org/10.1007/s00033-007-5075-5

N.T. EL-Dabe, and S.M. El-Mohandis, "Effect of couple stresses on pulsatile hydromagnetic Poiseuille flow," Fluid Dynamics Research, 15(5), 313-324 (1995). https://doi.org/10.1016/0169-5983(94)00049-6

Y. Aksoy, and M. Pakdemirli, "Approximate analytical solutions for flow of a third-grade fluid through a parallelplate channel filled with a porous medium," Transport in Porous Media, 83, 375-395 (2010). https://doi.org/10.1007/s11242-009-9447-5

M. Massoudi, and I. Christie, "Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid in a pipe," International Journal of Non-Linear Mechanics, 30(5), 687-699 (1995). https://doi.org/10.1016/0020-7462(95)00031-I

T. Chinyoka, and O.D. Makinde, "Analysis of transient Generalized Couette flow of a reactive variable viscosity third-grade liquid with asymmetric convective cooling," Mathematical and Computer Modelling, 54(1-2), 160-174 (2011). http://dx.doi.org/10.1016/j.mcm.2011.01.047

Опубліковано
2024-06-01
Цитовано
Як цитувати
Фарук, М., ХанІ. =., Наваз, Р., Ісмаїл, Г. М., Умар, Х., & Ахмад, Х. (2024). Порівняльний аналіз плоскої течії Куетта парно напруженої рідини під впливом магнітогідродинаміки. Східно-європейський фізичний журнал, (2), 219-233. https://doi.org/10.26565/2312-4334-2024-2-21