Термічно активована уповільнена флуоресценція в органічних напівпровідниках та її застосування у світловипромінювальних діодах

  • Сергій Мельников Національний університет «Львівська політехніка», кафедра електронної інженерії, Львів, Україна https://orcid.org/0000-0002-1093-9869
  • Ігор Гельжинський Національний університет «Львівська політехніка», кафедра електронної інженерії, Львів, Україна https://orcid.org/0000-0001-5397-4595
  • Тетяна Булавінець Національний університет «Львівська політехніка», кафедра електронної інженерії, Львів, Україна https://orcid.org/0000-0001-6898-3363
  • Павло Стахіра Національний університет «Львівська політехніка», кафедра електронної інженерії, Львів, Україна https://orcid.org/0000-0001-5210-415X
Ключові слова: органічні світловипромінюючі діоди, термічно активована уповільнена флуоресценція, емітер, багатошарова структура, екситон, синглет-триплетне енергетичне розщеплення

Анотація

Наявність ефекту термічно активованої уповільненої флуоресценції (TADF) в органічних світловипромінюючих матеріалах (емітерах), що проявляється в «збирані» триплетних екситонів в органічних напівпровідникових комплексах, які не містять благородних металів, створює чудові передумови до застосування TADF матеріалів у технології виготовлення органічних світловипромінюючих діодів (OLED). Значущий прогрес у вирішенні теоретичних та технічних завдань, що досягається в процесі розроблення високоефективних TADF матеріалів, прокладає шлях до формування майбутнього органічної електроніки. У даному огляді розглянута природа механізму генерації довготривалої флуоресценції на молекулярному рівні та сучасні стратегії проектування TADF донорно-акцепторних матеріалів, а також ексиплексних міжмолекулярних комплексів. Особлива увага акцентується на аналізі TADF емітерних амбіполярних матеріалів з сильно закрученою, жорсткою молекулярною структурою, які виявляють тенденцію до багатоканальних механізмів випромінювання та їхньої імплементації в різноманітну архітектуру OLED структур.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

S.R. Forrest, D.D.C. Bradley, and M.E. Thompson, Advanced Materials, 15(13), 1043 (2003). https://doi.org/10.1002/adma.200302151

Fröbel, M.; Schwab, T.; Kliem, M.; Hofmann, S.; Leo, K.; Gather, M. C. Light: Sci. Appl. 4, e247 (2015). https://doi.org/10.1038/lsa.2015.20

N. Ohon, T. Bulavinets, I. Yaremchuk, and R. Lesyuk, East European Journal of Physics, 4, 6-22 (2022). https://doi.org/10.26565/2312-4334-2022-4-01

F. Dumur, Org. Electron. 21, 27 (2015). https://doi.org/10.1016/j.orgel.2015.02.026

M.A. Baldo, D.F. O’Brien, M.E. Thompson, and S.R. Forrest, Physical Review B, 60(20), 14422 (1999). https://doi.org/10.1103/PhysRevB.60.14422

M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S.R. Forrest, Nature, 395, 151 (1998). https://doi.org/10.1038/25954

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature, 492, 234 (2012). https://doi.org/10.1038/nature11687

Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev. 40, 2943 (2011). https://doi.org/10.1039/c0cs00160k

M. Godumala, S. Choi, M.J. Cho, and D.H.J. Choi, Mater. Chem. C, 4, 11355 (2016). https://doi.org/10.1039/C6TC04377A

H. Yersin, A.F. Rausch, R. Czerwieniec, T. Hofbeck, and T. Fischer, Coordination Chemistry Reviews, 255(21), 2622 (2011). https://doi.org/10.1016/j.ccr.2011.01.042

M.Y. Wong, and E. Zysman-Colman, Adv. Mater. 29, 1605444 (2017). https://doi.org/10.1002/adma.201605444

Y. Li, J.-Y. Liu, Y.-D. Zhao, and Y.-C. Cao, Mater. Today, 20, 258 (2017). https://doi.org/10.1016/j.mattod.2016.12.003

Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, et al., Chem. Soc. Rev. 46, 915 (2017). https://doi.org/10.1039/C6CS00368K

X. Tan, D. Volyniuk, T. Matulaitis, J. Keruckas, K. Ivaniuk, I. Helzhynskyy, P. Stakhira, and J.V.s Grazulevicius, Dyes and Pigments, 177, 108259 (2020). https://doi.org/10.1016/j.dyepig.2020.108259

A. Bucinskas, K. Ivaniuk, G. Baryshnikov, O. Bezvikonnyi, P. Stakhira, D. Volyniuk, B. Minaev, et al., Organic Electronics, 86, 105894 (2020). https://doi.org/10.1016/j.orgel.2020.105894

N. Bunzmann, B. Krugmann, S. Weissenseel, L. Kudriashova, K. Ivaniuk, and P. Stakhira, Advanced Electronic Materials, 7, 2000702 (2021). https://doi.org/doi.org/10.1002/aelm.202000702

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature, 492, 234 (2012). https://doi.org/10.1038/nature11687

Q.S. Zhang, B. Li, S.P. Huang, H. Nomura, H. Tanaka, and C. Adachi, Nat. Photonics, 8, 326 (2014). https://doi.org/10.1038/nphoton.2014.12

S.Y. Lee, T. Yasuda, Y.S. Yang, Q. Zhang, and C. Adachi, Angew. Chem., Int. Ed. 126, 6520 (2014). https://doi.org/10.1002/ange.201402992

J. Miller, Phys. Today, 66, 10 (2013). https://doi.org/10.1063/PT.3.2166

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, et al., Adv. Mater. 26, 7931 (2014). https://doi.org/10.1002/adma.201402532

D.R. Lee, B.S. Kim, C.W. Lee, Y. Im, K.S. Yook, S.H. Hwang, and J.Y. Lee, ACS Appl. Mater. Interfaces, 7, 9625 (2015). https://doi.org/10.1021/acsami.5b01220

J.W. Sun, J.H. Lee, C.K. Moon, K.H. Kim, H. Shin, and J.J. Kim, Adv. Mater. 26, 5684 (2014). https://doi.org/10.1039/C9RA02875G

Y. Im, M. Kim, Y.J. Cho, J.-A. Seo, K.S. Yook, and J.Y. Lee, Chem. Mater. 29, 1946 (2017). https://doi.org/10.1021/acs.chemmater.6b05324

L. Yao, B. Yang, and Y. Ma, Science China Chemistry, 57, 335 (2014). https://doi.org/10.1007/s11426-013-5046-y

Y. Im, S.Y. Byun, J.H. Kim, D.R. Lee, C.S. Oh, K.S. Yook, J.Y. Lee, Adv. Funct. Mater. 27, 1603007 (2017). https://doi.org/10.1002/adfm.201603007

X. Cai, Z. Qiao, M. Li, X. Wu, Y. He, X. Jiang, Y. Cao, and S.J. Su, Angew. Chem. Int. Ed. 58, 13522 (2019). https://doi.org/10.1002/anie.201906371

Z. Mao, Z. Yang, C. Xu, Z. Xie, L. Jiang, F.L. Gu, J. Zhao, et al., Chem. Sci. 10, 7352 (2019). https://doi.org/10.1039/C9SC02282A

H. Fu, Y.-M. Cheng, P.-T. Chou, and Y. Chi, Mater. Today, 14, 472 (2011). https://doi.org/10.1016/S1369-7021(11)70211-5

B. Li, Z. Yang, W. Gong, X. Chen, D.W. Bruce, S. Wang, H. Ma, et al., Adv. Opt. Mater. 9, (2021). https://doi.org/10.1002/anie.202301896

W.-C. Chen, C.-S. Lee, and Q.-X. Tong, J. Mater. Chem. C, 3, 10957 (2015). https://doi.org/10.1039/C5TC02420J

M. Zhu, and C. Yang, Chem. Soc. Rev. 42, 4963 (2013). https://doi.org/10.1039/c3cs35440g

S. Winter, S. Reineke, K. Walzer, and K. Leo, Proc. SPIE, 6999, 69992N (2008). https://doi.org/10.1117/12.782784

M. Liu, R. Komatsu, X. Cai, H. Sasabe, T. Kamata, K. Nakao, K. Liu, et al., Adv. Opt. Mater. 5, (2017). https://doi.org/10.1002/adom.201700334

W.L. Tsai, et al. Chem. Commun. 51, 13662 (2015). https://doi.org/10.1039/C5CC05022G

F.B. Dias, K.N. Bourdakos, V. Jankus, K.C. Moss, K.T. Kamtekar, V. Bhalla, J. Santos, et al., Adv. Mater. 25, 3707 (2013). https://doi.org/10.1002/adma.201300753

S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S.Y. Lee, H. Nomura, N. Nakamura, et al., Nature Materials, 14, 330 (2015). https://doi.org/10.1038/nmat4154

Q. Zhang, et al., Adv. Mater. 27, 2096 (2015). https://doi.org/10.1002/adma.201405474

J. Guo, et al., Adv. Funct. Mater. 27, 1606458 (2017). https://doi.org/10.1002/adfm.201606458

J. Huang, et al., Angew. Chem. Int. Ed. 129, 13151 (2017). https://doi.org/10.1002/anie.201706752

X. Hu, N. Aizawa, M. Kim, M. Huang, Z. Li, G. Liu, H. Gao, et al., Chemical Engineering Journal, 434, 134728, (2022). https://doi.org/10.1016/j.cej.2022.134728

S. Kesari, B.K. Mishra, and A.N. Panda, Chemical Physics Letters, 791, 139383 (2022). https://doi.org/10.1016/j.cplett.2022.139383

F.B. Dias, T.J. Penfold, and A. P. Monkman, Methods Appl Fluoresc. 5, 012001 (2017). https://doi.org/10.1088/2050-6120/aa537e

S.-C. Ji, T. Zhao, Z. Wei, L. Meng, X.-D. Tao, M. Yang, X.-L. Chen, and C.-Z. Lu, Chemical Engineering Journal, 435, 134868 (2022). https://doi.org/10.1016/j.cej.2022.134868

K. Suzuki, S. Kubo, K. Shizu, T. Fukushima, A. Wakamiya, Y. Murata, C. Adachi, and H. Kaji, Angew. Chem. Int. Ed. 54, 15231 (2015). https://doi.org/10.1002/anie.201508270

M.-S. Lin, et al. Mater. Chem. 22, 16114 (2012). https://doi.org/10.1039/C2JM32717A

Q. Zhang, et al. Nat. Photon. 8, 326 (2014). https://doi.org/10.1038/nphoton.2014.12

I.S. Park, S.Y. Lee, C. Adachi, and T. Yasuda, Adv. Funct. Mater. 26, 1813 (2016). https://doi.org/10.1002/adfm.201505106

Y.J. Cho, K.S. Yook, and J.Y. Lee, Adv. Mater. 26, 6642 (2014). https://doi.org/10.1002/adma.201402188

S. Hirata, et al., Nat. Mater. 14, 330 (2015). https://doi.org/10.1038/nmat4154

A. Senes, et al., J. Mater. Chem. C, 5, 6555 (2017). https://doi.org/10.1039/C7TC01568B

B.S. Kim, and J.Y. Lee, ACS Appl. Mater. Interfaces, 6, 8396 (2014). https://doi.org/10.1021/am501301g

Y. Seino, S. Inomata, H. Sasabe, Y.J. Pu, and J. Kido, Adv. Mater. 28, 2638 (2016). https://doi.org/10.1002/adma.201503782

M.P. Gaj, C. Fuentes-Hernandez, Y. Zhang, S.R. Marder, and B. Kippelen, Org. Electron. 16, 109 (2015). https://doi.org/10.1007/s00894-016-3047-4

J. Zhang, et al., Adv. Mater. 28, 479 (2016). https://doi.org/10.1002/adma.201502772

P. Dos Santos, et al., J. Phys. Chem. Lett. 7, 3341 (2016). https://doi.org/10.1021/acs.jpclett.6b01542

J. Nishide, H. Nakanotani, Y. Hiraga, and C. Adachi, Appl. Phys. Lett. 104, 233304 (2014). https://doi.org/10.1063/1.4882456

D. Zhang, L. Duan, Y. Li, D. Zhang, and Y. Qiu, J. Mater. Chem. C, 2, 8191 (2014). https://doi.org/10.1039/C4TC01289E

X.L. Li, et al., Adv. Mater. 28, 4614 (2016). https://doi.org/10.1002/adma.201505963

E. Angioni, M. Chapran, K. Ivaniuk, N. Kostiv, V. Cherpak, P. Stakhira, A. Lazauskas, et al., J. Mater. Chem. C, 4, 3851 (2016). https://doi.org/10.1039/C6TC00750C

S. Nowy, B.C. Krummacher, J. Frischeisen, N.A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008). https://doi.org/10.1063/1.3043800

C. Mayr, et al., Adv. Funct. Mater. 24, 5232 (2014). https://doi.org/10.1002/adfm.201400495

J. Li, R. Zhang, Z. Wang, B. Zhao, J. Xie, F. Zhang, H. Wang, and K. Guo, Adv. Opt. Mater. 6(6), 1701256 (2018). https://doi.org/10.1002/adom.201701256

K. Wu, Z. Wang, L. Zhan, C. Zhong, S. Gong, G. Xie, and C. Yang, J. Phys. Chem. Lett. 9, 1547 (2018). https://doi.org/10.1021/acs.jpclett.8b00344

X. Dong, S. Wang, C. Gui, H. Shi, F. Cheng, and B. Z. Tang, Tetrahedron, 74, 497 (2018). https://doi.org/10.1016/j.tet.2017.12.022

I.H. Lee, W. Song, and J.Y. Lee, Org. Electron. 29, 22 (2016). https://doi.org/10.1002/adma.201605444

S. Xu, T. Liu, Y. Mu, Y.-F. Wang, Z. Chi, C.-C. Lo, S. Liu, et al., Angew. Chem. Int. Ed. 54, 874 (2015). https://doi.org/10.1002/anie.201409767

Z. Xie, C. Chen, S. Xu, J. Li, Y. Zhang, S. Liu, J. Xu, and Z. Chi, Angew. Chem. Int. Ed. 54, 7181 (2015). https://doi.org/10.1002/anie.201502180

Опубліковано
2024-03-05
Цитовано
Як цитувати
Мельников, С., Гельжинський, І., Булавінець, Т., & Стахіра, П. (2024). Термічно активована уповільнена флуоресценція в органічних напівпровідниках та її застосування у світловипромінювальних діодах. Східно-європейський фізичний журнал, (1), 31-42. https://doi.org/10.26565/2312-4334-2024-1-02

Найбільш популярні статті цього автора (авторів)