Thermally Activated Delayed Fluorescence in Organic Semiconductors and Its Application in Light-Emitting Diodes

Keywords: Organic light-emitting diodes, Thermally activated delayed fluorescence, Emitter, Multilayer structure, Exciton, Singlet triplet energy splitting

Abstract

The presence of the effect of thermally activated delayed fluorescence (TADF) in organic light-emitting materials (emitters), manifested in the "collecting" of triplet excitons in organic semiconductor complexes that do not contain noble metals, creates excellent prerequisites for the application of TADF materials in the technology of manufacturing organic light-emitting diodes (OLED). The significant progress in solving theoretical and technical problems, achieved in the process of development of highly efficient TADF materials, paves the way for the formation of the future of organic electronics. This review presents the analyses of the nature of the long-term fluorescence generation mechanism at the molecular level and the up-to-date strategies for designing TADF donor-acceptor materials, as well as exciplex intermolecular complexes. Special attention is focused on the analysis of TADF emitter ambipolar materials with a highly twisted, rigid molecular structure, which reveal a tendency towards the multi-channel emission mechanisms and their implementation in a variety of OLED structure architectures.

Downloads

Download data is not yet available.

References

S.R. Forrest, D.D.C. Bradley, and M.E. Thompson, Advanced Materials, 15(13), 1043 (2003). https://doi.org/10.1002/adma.200302151

Fröbel, M.; Schwab, T.; Kliem, M.; Hofmann, S.; Leo, K.; Gather, M. C. Light: Sci. Appl. 4, e247 (2015). https://doi.org/10.1038/lsa.2015.20

N. Ohon, T. Bulavinets, I. Yaremchuk, and R. Lesyuk, East European Journal of Physics, 4, 6-22 (2022). https://doi.org/10.26565/2312-4334-2022-4-01

F. Dumur, Org. Electron. 21, 27 (2015). https://doi.org/10.1016/j.orgel.2015.02.026

M.A. Baldo, D.F. O’Brien, M.E. Thompson, and S.R. Forrest, Physical Review B, 60(20), 14422 (1999). https://doi.org/10.1103/PhysRevB.60.14422

M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S.R. Forrest, Nature, 395, 151 (1998). https://doi.org/10.1038/25954

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature, 492, 234 (2012). https://doi.org/10.1038/nature11687

Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev. 40, 2943 (2011). https://doi.org/10.1039/c0cs00160k

M. Godumala, S. Choi, M.J. Cho, and D.H.J. Choi, Mater. Chem. C, 4, 11355 (2016). https://doi.org/10.1039/C6TC04377A

H. Yersin, A.F. Rausch, R. Czerwieniec, T. Hofbeck, and T. Fischer, Coordination Chemistry Reviews, 255(21), 2622 (2011). https://doi.org/10.1016/j.ccr.2011.01.042

M.Y. Wong, and E. Zysman-Colman, Adv. Mater. 29, 1605444 (2017). https://doi.org/10.1002/adma.201605444

Y. Li, J.-Y. Liu, Y.-D. Zhao, and Y.-C. Cao, Mater. Today, 20, 258 (2017). https://doi.org/10.1016/j.mattod.2016.12.003

Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, et al., Chem. Soc. Rev. 46, 915 (2017). https://doi.org/10.1039/C6CS00368K

X. Tan, D. Volyniuk, T. Matulaitis, J. Keruckas, K. Ivaniuk, I. Helzhynskyy, P. Stakhira, and J.V.s Grazulevicius, Dyes and Pigments, 177, 108259 (2020). https://doi.org/10.1016/j.dyepig.2020.108259

A. Bucinskas, K. Ivaniuk, G. Baryshnikov, O. Bezvikonnyi, P. Stakhira, D. Volyniuk, B. Minaev, et al., Organic Electronics, 86, 105894 (2020). https://doi.org/10.1016/j.orgel.2020.105894

N. Bunzmann, B. Krugmann, S. Weissenseel, L. Kudriashova, K. Ivaniuk, and P. Stakhira, Advanced Electronic Materials, 7, 2000702 (2021). https://doi.org/doi.org/10.1002/aelm.202000702

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature, 492, 234 (2012). https://doi.org/10.1038/nature11687

Q.S. Zhang, B. Li, S.P. Huang, H. Nomura, H. Tanaka, and C. Adachi, Nat. Photonics, 8, 326 (2014). https://doi.org/10.1038/nphoton.2014.12

S.Y. Lee, T. Yasuda, Y.S. Yang, Q. Zhang, and C. Adachi, Angew. Chem., Int. Ed. 126, 6520 (2014). https://doi.org/10.1002/ange.201402992

J. Miller, Phys. Today, 66, 10 (2013). https://doi.org/10.1063/PT.3.2166

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, et al., Adv. Mater. 26, 7931 (2014). https://doi.org/10.1002/adma.201402532

D.R. Lee, B.S. Kim, C.W. Lee, Y. Im, K.S. Yook, S.H. Hwang, and J.Y. Lee, ACS Appl. Mater. Interfaces, 7, 9625 (2015). https://doi.org/10.1021/acsami.5b01220

J.W. Sun, J.H. Lee, C.K. Moon, K.H. Kim, H. Shin, and J.J. Kim, Adv. Mater. 26, 5684 (2014). https://doi.org/10.1039/C9RA02875G

Y. Im, M. Kim, Y.J. Cho, J.-A. Seo, K.S. Yook, and J.Y. Lee, Chem. Mater. 29, 1946 (2017). https://doi.org/10.1021/acs.chemmater.6b05324

L. Yao, B. Yang, and Y. Ma, Science China Chemistry, 57, 335 (2014). https://doi.org/10.1007/s11426-013-5046-y

Y. Im, S.Y. Byun, J.H. Kim, D.R. Lee, C.S. Oh, K.S. Yook, J.Y. Lee, Adv. Funct. Mater. 27, 1603007 (2017). https://doi.org/10.1002/adfm.201603007

X. Cai, Z. Qiao, M. Li, X. Wu, Y. He, X. Jiang, Y. Cao, and S.J. Su, Angew. Chem. Int. Ed. 58, 13522 (2019). https://doi.org/10.1002/anie.201906371

Z. Mao, Z. Yang, C. Xu, Z. Xie, L. Jiang, F.L. Gu, J. Zhao, et al., Chem. Sci. 10, 7352 (2019). https://doi.org/10.1039/C9SC02282A

H. Fu, Y.-M. Cheng, P.-T. Chou, and Y. Chi, Mater. Today, 14, 472 (2011). https://doi.org/10.1016/S1369-7021(11)70211-5

B. Li, Z. Yang, W. Gong, X. Chen, D.W. Bruce, S. Wang, H. Ma, et al., Adv. Opt. Mater. 9, (2021). https://doi.org/10.1002/anie.202301896

W.-C. Chen, C.-S. Lee, and Q.-X. Tong, J. Mater. Chem. C, 3, 10957 (2015). https://doi.org/10.1039/C5TC02420J

M. Zhu, and C. Yang, Chem. Soc. Rev. 42, 4963 (2013). https://doi.org/10.1039/c3cs35440g

S. Winter, S. Reineke, K. Walzer, and K. Leo, Proc. SPIE, 6999, 69992N (2008). https://doi.org/10.1117/12.782784

M. Liu, R. Komatsu, X. Cai, H. Sasabe, T. Kamata, K. Nakao, K. Liu, et al., Adv. Opt. Mater. 5, (2017). https://doi.org/10.1002/adom.201700334

W.L. Tsai, et al. Chem. Commun. 51, 13662 (2015). https://doi.org/10.1039/C5CC05022G

F.B. Dias, K.N. Bourdakos, V. Jankus, K.C. Moss, K.T. Kamtekar, V. Bhalla, J. Santos, et al., Adv. Mater. 25, 3707 (2013). https://doi.org/10.1002/adma.201300753

S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S.Y. Lee, H. Nomura, N. Nakamura, et al., Nature Materials, 14, 330 (2015). https://doi.org/10.1038/nmat4154

Q. Zhang, et al., Adv. Mater. 27, 2096 (2015). https://doi.org/10.1002/adma.201405474

J. Guo, et al., Adv. Funct. Mater. 27, 1606458 (2017). https://doi.org/10.1002/adfm.201606458

J. Huang, et al., Angew. Chem. Int. Ed. 129, 13151 (2017). https://doi.org/10.1002/anie.201706752

X. Hu, N. Aizawa, M. Kim, M. Huang, Z. Li, G. Liu, H. Gao, et al., Chemical Engineering Journal, 434, 134728, (2022). https://doi.org/10.1016/j.cej.2022.134728

S. Kesari, B.K. Mishra, and A.N. Panda, Chemical Physics Letters, 791, 139383 (2022). https://doi.org/10.1016/j.cplett.2022.139383

F.B. Dias, T.J. Penfold, and A. P. Monkman, Methods Appl Fluoresc. 5, 012001 (2017). https://doi.org/10.1088/2050-6120/aa537e

S.-C. Ji, T. Zhao, Z. Wei, L. Meng, X.-D. Tao, M. Yang, X.-L. Chen, and C.-Z. Lu, Chemical Engineering Journal, 435, 134868 (2022). https://doi.org/10.1016/j.cej.2022.134868

K. Suzuki, S. Kubo, K. Shizu, T. Fukushima, A. Wakamiya, Y. Murata, C. Adachi, and H. Kaji, Angew. Chem. Int. Ed. 54, 15231 (2015). https://doi.org/10.1002/anie.201508270

M.-S. Lin, et al. Mater. Chem. 22, 16114 (2012). https://doi.org/10.1039/C2JM32717A

Q. Zhang, et al. Nat. Photon. 8, 326 (2014). https://doi.org/10.1038/nphoton.2014.12

I.S. Park, S.Y. Lee, C. Adachi, and T. Yasuda, Adv. Funct. Mater. 26, 1813 (2016). https://doi.org/10.1002/adfm.201505106

Y.J. Cho, K.S. Yook, and J.Y. Lee, Adv. Mater. 26, 6642 (2014). https://doi.org/10.1002/adma.201402188

S. Hirata, et al., Nat. Mater. 14, 330 (2015). https://doi.org/10.1038/nmat4154

A. Senes, et al., J. Mater. Chem. C, 5, 6555 (2017). https://doi.org/10.1039/C7TC01568B

B.S. Kim, and J.Y. Lee, ACS Appl. Mater. Interfaces, 6, 8396 (2014). https://doi.org/10.1021/am501301g

Y. Seino, S. Inomata, H. Sasabe, Y.J. Pu, and J. Kido, Adv. Mater. 28, 2638 (2016). https://doi.org/10.1002/adma.201503782

M.P. Gaj, C. Fuentes-Hernandez, Y. Zhang, S.R. Marder, and B. Kippelen, Org. Electron. 16, 109 (2015). https://doi.org/10.1007/s00894-016-3047-4

J. Zhang, et al., Adv. Mater. 28, 479 (2016). https://doi.org/10.1002/adma.201502772

P. Dos Santos, et al., J. Phys. Chem. Lett. 7, 3341 (2016). https://doi.org/10.1021/acs.jpclett.6b01542

J. Nishide, H. Nakanotani, Y. Hiraga, and C. Adachi, Appl. Phys. Lett. 104, 233304 (2014). https://doi.org/10.1063/1.4882456

D. Zhang, L. Duan, Y. Li, D. Zhang, and Y. Qiu, J. Mater. Chem. C, 2, 8191 (2014). https://doi.org/10.1039/C4TC01289E

X.L. Li, et al., Adv. Mater. 28, 4614 (2016). https://doi.org/10.1002/adma.201505963

E. Angioni, M. Chapran, K. Ivaniuk, N. Kostiv, V. Cherpak, P. Stakhira, A. Lazauskas, et al., J. Mater. Chem. C, 4, 3851 (2016). https://doi.org/10.1039/C6TC00750C

S. Nowy, B.C. Krummacher, J. Frischeisen, N.A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008). https://doi.org/10.1063/1.3043800

C. Mayr, et al., Adv. Funct. Mater. 24, 5232 (2014). https://doi.org/10.1002/adfm.201400495

J. Li, R. Zhang, Z. Wang, B. Zhao, J. Xie, F. Zhang, H. Wang, and K. Guo, Adv. Opt. Mater. 6(6), 1701256 (2018). https://doi.org/10.1002/adom.201701256

K. Wu, Z. Wang, L. Zhan, C. Zhong, S. Gong, G. Xie, and C. Yang, J. Phys. Chem. Lett. 9, 1547 (2018). https://doi.org/10.1021/acs.jpclett.8b00344

X. Dong, S. Wang, C. Gui, H. Shi, F. Cheng, and B. Z. Tang, Tetrahedron, 74, 497 (2018). https://doi.org/10.1016/j.tet.2017.12.022

I.H. Lee, W. Song, and J.Y. Lee, Org. Electron. 29, 22 (2016). https://doi.org/10.1002/adma.201605444

S. Xu, T. Liu, Y. Mu, Y.-F. Wang, Z. Chi, C.-C. Lo, S. Liu, et al., Angew. Chem. Int. Ed. 54, 874 (2015). https://doi.org/10.1002/anie.201409767

Z. Xie, C. Chen, S. Xu, J. Li, Y. Zhang, S. Liu, J. Xu, and Z. Chi, Angew. Chem. Int. Ed. 54, 7181 (2015). https://doi.org/10.1002/anie.201502180

Published
2024-03-05
Cited
How to Cite
Melnykov, S., Helzhynskyy, I., Bulavinets, T., & Stakhira, P. (2024). Thermally Activated Delayed Fluorescence in Organic Semiconductors and Its Application in Light-Emitting Diodes. East European Journal of Physics, (1), 31-42. https://doi.org/10.26565/2312-4334-2024-1-02