Первинне дослідження фізичних характеристик сполук CuInSe2 та CuInTe2

  • Юсра Мегдуд Інститут наук Університетського центру Тіпаза, Морслі Абдаллах, Алжир; Лабораторія LPR, департамент фізики, факультет природничих наук, Баджі-Аннаба-Адрес, Алжир https://orcid.org/0000-0001-8999-8134
  • Яміна Бенкріма Вища нормальна школа Уаргла, Уаргла, Алжир https://orcid.org/0000-0001-8005-4065
  • Редхе Менесер Відділ розвитку поновлюваних джерел енергії в посушливих зонах (UDERZA), Університет Ель-Уед, Алжир https://orcid.org/0000-0002-1801-0835
  • Латіфа Таїрі Лабораторія LPR, департамент фізики, факультет природничих наук, Баджі-Аннаба-Адрес, Алжир; Науково-дослідний центр промислових технологій ЦРТІ, Черага, Алжир
  • Абдельгані Лекле Лабораторія LPR, департамент фізики, факультет природничих наук, Баджі-Аннаба-Адрес, Алжир https://orcid.org/0000-0001-5098-849X
  • Себті Гемід Лабораторія LPR, департамент фізики, факультет природничих наук, Баджі-Аннаба-Адрес, Алжир
  • Хосін Мераджі Лабораторія LPR, департамент фізики, факультет природничих наук, Баджі-Аннаба-Адрес, Алжир https://orcid.org/0000-0002-3359-3725
Ключові слова: фотоелектрика, халькопірит, FP-LAPW, заборонена зона, теплові властивості

Анотація

У цій роботі представлений аналіз сполук халькопіриту CuInTe2 та CuInTe2 з акцентом на їх електронні, структурні, оптичні та термічні властивості. Для дослідження цих властивостей використовується повнопотенційний метод лінеаризованої приєднаної плоскої хвилі (FP-LAPW), заснований на підході перших принципів, що ґрунтується на теорії функціоналу щільності (DFT). У наших розрахунках враховуються два різні наближення для обмінного та кореляційного потенціалу, а саме наближення WC-GGA та mBJ-GGA, щоб забезпечити надійне та точне дослідження досліджуваних матеріалів. Отримані результати тісно узгоджуються із раніше встановленими теоретичними та експериментальними даними, тим самим підтверджуючи надійність нашої обчислювальної методології. Примітно, що це дослідження відкриває новий аспект, оскільки досліджується вплив тиску, так і температури на термічні параметри сполук CuInTe2 і CuInTe2. Цей аспект дослідження відрізняється своїм новаторським характером, оскільки, наскільки нам відомо, такого аналізу в існуючій літературі не було. Термічні властивості мають першорядне значення, особливо у контексті оптимізації процесу вирощування кристалів та прогнозування продуктивності в екстремальних термодинамічних умовах.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

E. Rosencher, and B.Vinter, Structural Study, Vibrational, Optical, Thermal Properties and Hirshfeld Surface Analysis of a New Iron (III) Complex Optoelectronics, (Cambridge University Press, Cambridge, UK, (2002). https://doi.org/10.1017/CBO9780511754647

A. Luque, Will we exceed 50% efficiency in photovoltaics, J. Appl. Phys. 110, 031301 (2011). https://doi.org/10.1063/1.3600702

R.H. Bube, Photovoltaic Materials, (Imperial College Press, London, 1998). https://doi.org/10.1016/S1369-7021(07)70275-4

W.N. Shafarman, and L. Stolt, in: Handbook of Photovoltaic Science and Engineering, edited by A. Luque, and S. Hegedus (Wiley, Chichester, UK, 2003) pp. 567–616. http://dx.doi.org/10.1002/9780470974704.ch1

M.A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables,” Prog. Photovolt: Res. Appl. 18, 346-352 (2010). https://doi.org/10.1002/pip.1021

S. Siebentritt, and U. Rau, editors, Wide-Gap Chalcopyrites, (Springer, Berlin, Heidelberg, Germany, 2006). https://link.springer.com/chapter/10.1007/3-540-31293-5_9

F. Chiker, B. Abbar, A. Tadjer, S. Bresson, B. Khelifa, and C. Mathieu, “Electronic structure and optical properties of ternary CdXP2 semiconductors (X = Si, Ge and Sn) under pressure,” Physica B, 349, 181-191 (2004). https://doi.org/10.1016/j.physb.2004.03.087

F. Chiker, B. Abbar, A. Tadjer, S. Bresson, B. Khelifa, and C. Mathieu, “The reflectivity spectra of ZnXP2 (X=Si, Ge, and Sn) compounds,” J. Solid State. Chem. 177(11), 3859-3867 (2004). http://dx.doi.org/10.1016/j.jssc.2004.07.020

B. Kocak and Y.O. Ciftci, “Ab-initio calculations of semiconductor,” Mater. Res. Bull. 77, 300-306 (2016). https://doi.org/10.1016/j.materresbull.2016.02.008

Y. Marfaing, “Énergie photovoltaïque,” J. Phys. IV France, 12, Pr 2 – 145 (2002). https://doi.org/10.1051/jp420020021

J. Müller, J. Nowoczin, and H. Schimitt, “Composition, structure and optical properties of sputtered thin films of CuInSe2,” Thin Solid Films, 496, 364-370 (2006). https://doi.org/10.1016/j.tsf.2005.09.077

R.C. Gupta, P. Varshney, Pravesh, M. Lal, D. Kumar, K. Singh, and A.S. Verma, “Mechanical stability parameters of chalcogenides and pnictides based optoelectronic materials,” Chalcogenide Letters, 20(2), 101–112 (2023). https://doi.org/10.15251/CL.2023.202.101

H. Yu, G. Huang, Q. Peng, L.-C. Chen, H.-J. Pang, X.-Y. Qin, P.-F. Qiu, et al., “A combined experiment and first-principles study on lattice dynamics of thermoelectric CuInTe2,” Journal of Alloys and Compounds, 822, 153610 (2020). https://doi.org/10.1016/j.jallcom.2019.153610

G. Jia, and J. Du, “Catalyst-Assisted Solution−Liquid−Solid Synthesis of CdS/CuInSe2 and CuInTe2/CuInSe2 Nanorod Heterostructures,” Inorg. Chem. 58(1), 695-702 (2018). https://doi.org/10.1021/acs.inorgchem.8b02870

H. Yu, L.-C. Chen, H.-J. Pang, P.-F. Qiu, Q. Peng, and X.-J. Chen, “Temperature-dependent phonon anharmonicity and thermal transport in CuInTe2,” Physical Review B, 105, 245204 (2022). https://doi.org/10.1103/PhysRevB.105.245204

E. Mazalan, M.S.A. Aziz, N.A.S. Amin, F.D. Ismail, M.S. Roslan, and K. Chaudhary, “First-principles study on crystal structures and bulk modulus of CuInX2 (X = S, Se, S-Se) solar cell absorber,” Journal of Physics: Conference Series, 2432, 012009 (2023). http://dx.doi.org/10.1088/1742-6596/2432/1/012009

O.K. Anderson, “Linear methods in band theory,” Phys. Rev. B, 42, 3060 (1975). https://doi.org/10.1103/PhysRevB.12.3060

P. Hohenberg, and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. B, 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

W. Kohn, and L.S. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. A, 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2k. An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties, (Vienna University of Technology, Vienna, 2001).

Z. Wu, and R.E. Cohen, “More accurate generalized gradient approximation for solids,” Phys. Rev. B, 73, 235116 (2006). https://doi.org/10.1103/PhysRevB.73.235116

F. Tran, and P. Blaha, “Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential,” Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

A.D. Becke, and E.R. Johnson, “A simple effective potential for exchange,” J. Chem. Phys. 124, 221101 (2006). https://doi.org/10.1063/1.2213970

F.D. Murnaghan, “The Compressibility of Media under Extreme Pressures,” P. Natl. Acad. Sci. USA, 30, 244-247 (1944). https://doi.org/10.1073%2Fpnas.30.9.244

M.L. Cohen, “Calculation of bulk moduli of diamond and zinc-blende solids,” Phys. Rev. B, 32, 7988 (1985). https://doi.org/10.1103/PhysRevB.32.7988

S.N. Rashkeev, and W.R.L. Lambrecht, “Second-harmonic generation of I-III-VI2 chalcopyrite semiconductors: Effects of chemical substitutions,” Phys. Rev. B, 63, 165212 (2001). https://doi.org/10.1103/PhysRevB.63.165212

A.D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys. 98, 5648-5652 (1993). https://doi.org/10.1063/1.464913

J.S. Toll, “Causality and the Dispersion Relation: Logical Foundations,” Phys. Rev. 104, 1760 (1956). https://doi.org/10.1103/PhysRev.104.1760

L.D. Landau, and E.M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon Press, Oxford, 1960). https://doi.org/10.4236/ib.2011.33034

H. A. Kramers, Collected Science Papers (North-Holland Publishing Co, Amsterdam, 1956). https://doi.org/10.1088/0953-4075/38/13/016

R. de. L. Kronig, “Mean-Field Formulation of Maxwell Equations to Model Electrically Inhomogeneous and Isotropic Media,” J. Opt. Soc. Am. 12, 547 (1926). https://doi.org/10.4236/ajcm.2018.84023

C.M.I. Okoye, “Theoretical study of the electronic structure, chemical bonding and optical properties of in the paraelectric cubic phase,” J. Phys. 15, 5945 (2003). https://doi.org/10.1103/PhysRevB.62.8828

P.Y. Yu, and M. Cardona, Fundamentals of Semiconductors, (Springer-Verlag, Berlin, 1996). http://dx.doi.org/10.1007/3-540-26475-2_1

A.H. Reshak, et al., “First Principle Study of Electronic Structure, Chemical Bonding and Optical Properties of 5-azido-1H-tetrazole,” J. Alloys Compd. 509, 6737 (2011). http://dx.doi.org/10.1016/S1452-3981(23)12986-5

C.S. Schnohr, Compound semiconductor alloys: From atomic-scale structure to bandgap bowing “, Appl. Phys. Rev. 2, 031304 (2015). https://doi.org/10.1063/1.4930002

Z. Lv, C. Cheng, Y. Cheng, X. Chen, G. Ji, “Elastic, thermodynamic and electronic properties of LaF3 under pressure from first principles”, Computational Materials Science, 89(15), 57-64 (2014). https://doi.org/10.1016/j.commatsci.2014.03.011

R. de. L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547-557 (1926). http://dx.doi.org/10.1364/JOSA.12.000547

A. Shankar, R.K. Thapa, and P.K. Mandal, “Electronic and optical properties of CuInTe2,” J. Phys. Conf. Ser. 765, 012008 (2016). http://dx.doi.org/10.1088/1742-6596/765/1/012008

D.R. Penn, “Wave-number-dependent dielectric function of semiconductors,” Phys. Rev. 128, 2093 (1962). https://doi.org/10.1103/PhysRev.128.2093

S.M. Wasim, and J.G. Albornóz, “Electrical and optical properties of n‐ and p‐type CuInTe2,” Phys. Status Solidi A, 110, 575 583 (1988). https://doi.org/10.1002/pssa.2211100231

J.G. Davis, P.M. Bridenbaugh, and S. Wagner, “Electrical and optical properties of copper indium ditelluride crystals grown from near-stoichiometric compositions,” J. Electron. Mater. 7, 39-45 (1978). https://doi.org/10.1007/BF02656019

V. Riede, H. Neumann, H. Sobotta, R.D. Tomlinson, E. Elliott, and L. Howarth, “Infrared study of lattice and free carrier effects in p-type CuInTe2 single crystals,” Solid State Commun. 33, 557 (1980). https://doi.org/10.1016/0038-1098(80)90859-5

N. Vermeulen, et al., “Post-2000 nonlinear optical materials and measurements: data tables and best practices,” Journal of physics photonics, 5(3), 035001 (2023). https://doi.org/10.1088/2515-7647/ac9e2f

N.V. Smith, “Photoelectron energy spectra and the band structures of the noble metals,” Phys. Rev. B, 3, 1862 (1971). https://doi.org/10.1103/PhysRevB.3.1862

F. Wooten, Optical Properties of Solids, (Academic Press, New York and London, 1972). https://doi.org/10.1016/0169-4332(90)90007-M

A. Ghosh, R. Thangavel, and M. Rajagopalan, “Electronic and optical modeling of solar cell compound CuXY2 (X = In, Ga, Al; Y = S, Se, Te): first-principles study via Tran–Blaha-modified Becke–Johnson exchange,” J. Mater. Sci. 50, 1710-1717 (2015). http://dx.doi.org/10.1007/s10853-014-8732-z

J.T. Goldstein, D.E. Zelmon, A.W. Saxler, S.M. Hegde, J.D. Wolf, P.G. Schunemann, et al., “Infrared properties of a nonlinear optical chalcopyrite semiconductor,” J. Appl. Phys. 86, 94 (1999). http://dx.doi.org/10.1063/1.370704

P.A. Franken, A.E. Hill, C.W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118 (1961). https://doi.org/10.1103/PhysRevLett.7.118

H. Salehi, and E. Gordanian, “Ab initio study of structural, electronic and optical properties of ternary chalcopyrites emiconductors,” Mat. Sci. Semicon. Proc. 47, 51-56 (2016). https://doi.org/10.1016/j.mssp.2016.02.015

R.R. Reddy, Y.N. Ahammed, K.R. Gopal, and D.V. Raghuram, “Optical electronegativity and refractive index of materials,” Opt. Mater. 10(2), 95-100 (1998). https://doi.org/10.1016/S0925-3467(97)00171-7

S. Cui, W. Feng, H. Hu, Z. Feng, and Y. Wang, “First principles studies of phase stability, electronic and elastic properties, computational Materials Science,” 47(4), 968-972 (2010). https://doi.org/10.1016/j.commatsci.2009.11.030

K. Bouamama, P. Djemia, N. Lebga, and K. Kassali, “High Pressure Macromolecular Crystallography,” High Pressure Research, 27(2), 269–277 (2007). https://doi.org/10.1080/08957950701265359

M.A. Blanco, A.M. Pendas, E. Francisco, J.M. Recio, and R. Franco, “Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3,” J. Mol. Struct. Theochem. 368, 245-255 (1996). https://doi.org/10.1016/S0166-1280(96)90571-0

E. Francisco, J.M. Recio, M.A. Blanco, A.M. Pendas, and A. Costales, “Quantum-Mechanical Study of Thermodynamic and Bonding,” J. Phys. Chem. 102, 1595-1601 (1998). https://doi.org/10.1021/jp972516j

E. Francisco, M.A. Blanco, and G. Sanjurjo, “Nontrivial effect of spin-orbit coupling on the intrinsic resistivity of ferromagnetic gadolinium,” Phys. Rev. B, 107, 115101 (2023). https://doi.org/10.1103/PhysRevB.107.115101

V.Kh. Kozlovskiy, “To the Question of Validity Grüneisen Solid State Equation,” World Journal of Condensed Matter Physics, 2(4), (2012). http://dx.doi.org/10.4236/wjcmp.2012.24038

A. T. Petit, and P. L. Dulong, “Recherches sur Quelques Points Importants de la Théorie de la Chaleur,” Annales de Chimie et de Physique, 10, 395-413 (1819). http://www.ffn.ub.es/luisnavarro/nuevo_maletin/Petit--Dulong_1819.pdf

R. Mahdjoubi, Y. Megdoud, L. Tairi, H. Meradji, Z. Chouahda, S. Ghemid, and F. El Haj Hassan, “Structural, electronic, optical and thermal properties of CuXTe (X=Al, Ga, In) compounds: an study,” International Journal of Modern Physics B, 33(07), 1950045 (2019). http://dx.doi.org/10.1142/S0217979219500450

Опубліковано
2023-12-02
Цитовано
Як цитувати
Мегдуд, Ю., Бенкріма, Я., Менесер, Р., Таїрі, Л., Лекле, А., Гемід, С., & Мераджі, Х. (2023). Первинне дослідження фізичних характеристик сполук CuInSe2 та CuInTe2. Східно-європейський фізичний журнал, (4), 231-243. https://doi.org/10.26565/2312-4334-2023-4-29

Найбільш популярні статті цього автора (авторів)