П'ятивимірна плоска симетрична космологічна модель з квадратним рівнянням стану в f(R,T) теорії гравітації

  • В.А. Такаре Факультет математики, Науковий коледж Шиваджі, Амраваті, Індія
  • Р.В. Мапарі Департамент математики, Урядовий Інститут науки та гуманітарних наук Відарбха, Амраваті https://orcid.org/0000-0002-5724-9734
  • С.С. Такре Факультет математики, Незалежний молодший коледж, Амраваті, Індія
Ключові слова: Квадратне рівняння стану, f(R,T) гравітація, космологічна стала, п'ятивимірна плоска симетрична космологічна модель

Анотація

У цій статті ми проаналізували п’ятивимірну плоску симетричну космологічну модель, що містить ідеальну рідину, у контексті f(R, T) гравітації. Рівняння поля розв’язані для двох класів f(R, T) гравітації, тобто f(R, T) = R + f(T) і f(R, T) = f1(R)f2(T) із включенням космологічної сталої Λ і квадратного рівняння параметрів стану у вигляді p = αρ2ρ, де α — константа і строго α≠ 0. Щоб отримати точні рішення, ми використовуємо об’ємний степеневий закон і експоненціальний закон розширення. Розглянуто фізичні та геометричні аспекти моделі.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

A.G. Riess, A.V. Fillippenko, P. Cgallis, et al., ”Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron J. 116(3), 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter, G. Aldering, G. Goldhaber, et al., ”Measurement of Ω and Λ from 42 High – redshift Supernovae,” Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221.

W.J. Percival, ”The build – up of haloes within Press – Schechter theory,” Mon. Not. R. Astron. Soc. 327, 1313(2001). https://doi.org/10.1046/j.1365-8711.2001.04837.x

R. Jimenez, L. Verde, T. Tren, and D. Stern, ”Constraint on the equation of state of dark energy and Hubble constant from stellar ages and the CMB,” Astrophys. J. 593, 622 (2003). https://doi.org/10.1086/376595

D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and S.A. Stanford, ”Cosmic chronometers: constraining the equation of state of dark energy. I : H(z) measurements,” J. Cosmolo. Astropart. Phys. 2, 8 (2010). https://doi.org/10.48550/arXiv.0907.3149.

J. Martin, ”Quintessence: A Mini-Review,” Mod. Phys. Lett. A, 23, 1252 (2008). http:/doi.org/10.1142/S0217732308027631

S. Nojiri, S. D. Odintsov, and M. Sami, ”Dark energy cosmology from higher – order, string-inspired gravity and its reconstruction,” Phys. Rev. D, 74, 046004 (2006), https://doi.org/10.1103/PhysRevD.74.046004

N. Bilic¸ fortschritte der Physik, ”Thermodynamics of dark energy,” 56, 363 (2008). https://doi.org/10.1002/prop.200710507

K. Karami, S. Ghaffari, and J. Fehri, ”Interacting polytropic gas model of phantom dark energy in non – flat universe,” Eur. Phys. J. C, 64(1), 85 (2009)https://doi.org/10.1140/epjc/s10052-009-1120-1

T.Chiba, T. Okabe, and M. Yamaguchi, ”Kinetically driven quintessence,” Phys. Rev. D, 62, 023511 (2000). https://doi.org/10.1103/PhysRevD.62.023511

T. Padmanabhan, and T. R. Chaudhury, ”Can the clustered dark matter and the smooth dark energy arise from the same scalar field?” Phys. Rev. D, 66, 081301(2002). https://doi.org/10.1103/PhysRevD.62.023511

M.C. Bento, O. Bertolami, and A.A. Sen, ”Generalized Chaplygin gas, accelerated expansion and dark energy – matter unification,” Phys. Rev. D, 66, 043507 (2002), https://doi.org/10.1103/PhysRevD.66.043507.

A. Kamenshchik, U. Moschella, and V. Pasquier,” An alternative to quintessence,” Phys. Lett. B, 511, 265 (2001), https://doi.org/10.1016/S0370-2693(01)00571-8.

P. J. E. Peebles, and B. Ratra, ”The cosmological constant and dark energy,” Rev. Mod. Phys. 75, 559 (2003), https://doi.org/10.1103/RevModPhys.75.559.

V. Sahni, and A. Starobinsky, ”The Case for a Positive Cosmological Λ-Term,” Int. J. Mod. Phy. D, 9, 373 (2000), https://doi.org/10.1142/S0218271800000542.

R. Ferraro, and F. Fiorini, ”Modified teleparallel gravity: inflation without an inflaton,” Phys. Rev. D, 75, 084031, (2007), https://doi.org/10.1103/PhysRevD.75.084031.

G.R. Bengochea, and R. Ferraro, ”Dark torsion as the cosmic speed-up,” Phys. Rev. D, 79, 124019 (2009). https://doi.org/10.1103/PhysRevD.79.124019

A. De Felice, and S. Tsujikawa, ”Construction of cosmologically viable f(G) gravity models,” Phys. Lett. B, 675, 1 (2009), https://doi.org/10.48550/arXiv.0810.5712

T. Harko, F.S.N. Lobo, S. Nojiri, and S.D. Odintsov, ”f (R, T)gravity,” Phys. Rev. D, 84, 024020 (2011), https://doi.org/10.1103/PhysRevD.84.024020

V.R. Chirde, and S.H. Shekh, ”Plane Symmetric Dark Energy Models in the form of Wet Dark Fluid in f (R, T) Gravity,” J. Astrophys. Astr. 37, 15 (2016).https://doi.org/10.1007/s12036-016-9391-z

P.K. Agrawal, and D.D. Pawar, ”Plane Symmetric Cosmological Model with Quark and Strange Quark Matter in f (R, T) Theory of Gravity,” J. Astrophys. Astr. 38, 2, (2017). https://doi.org/10.1007/s12036-016-9420-y

M. Farasat Shamir, ”Plane Symmetric Solutions in f (R, T) Gravity,” Commun. Theor. Phys. 65, 301–307,(2016), https://doi.org/10.1088/0253-6102/65/3/301

A.Y. Shaikh, and S.R. Bhoyar, ”Plane symmetric cosmological model with Λ in f (R, T) Gravity,” Prespacetime Journal, 6, 11 (2015). https://www.prespacetime.com/index.php/pst/article/view/839/826

M. Mollah, K. Singh, and P.S. Singh, ”Bianchi type-III cosmological model with quadratic EoS in Lyra geometry,” International Journal of Geometric Method in Modern physics, 15(11), 1850194 (2018), 10.1142/S0219887818501943

S. D. Katore, K. S. Adhav, A.Y. Shaikh, et al., ”Plane symmetric cosmological models with dark energy,” Astrophys. Space Sci. 333, 333–341 (2011), https://doi.org/10.1007/s10509-011-0622-0

K.S. Adhav, ”LRS Bianchi type -I cosmological model in f (R, T) theory of gravity,” Astrophys. Space Sci. 339, 365–369 (2012), https://doi.org/10.1007/s10509-011-0963-8.

V. Singh, and A. Beesham, ”LRS Bianchi I model with constant expansion rate in f (R, T) gravity,” Astrophys. Space Sci. 365, 125 (2020). https://doi.org/10.1007/s10509-020-03839-w

R. Nagpal, J.K. Singh, A. Beesham, and H. Shabani, ”Cosmological aspects of a hyperbolic solution in in f (R, T) gravity,” Ann. Phys.405, 234 (2019), https://doi.org/10.1016/j.aop.2019.03.015

R. Nagpal, S.K.J. Pacif, J K. Singh, K. Bamba, and A. Beesham, ”Analysis with observational constraints in Λ – cosmology in f (R, T) gravity,” Eur. Phys. J. C, 78, 946 (2018), https://doi.org/10.1140/epjc/s10052-018-6403-y

J.K. Singh, K. Bamba, R. Nagpal, and S.K.J. Pacif, ”Bouncing cosmology in f (R, T) gravity,” Phys. Rev. D, 97, 123536 (2018), https://doi.org/10.1103/PhysRevD.97.123536

S.D. Katore, and S.P. Hatkar, ”Bianchi type – III and Kantowski – Sachs domain wall cosmological models in the f (R, T) theory of gravitation,” Prog. Theor. Exp. Phys. 216, 033E01 (2016), https://doi.org/10.1093/ptep/ptw009

M.S. Singh, and S.S. Singh, ”Cosmological Dynamics of Anisotropic Dark Energy in f (R, T) Gravity,” New Astron. 72, 36-41 (2019), https://doi.org/10.1016/j.newast.2019.03.007

Y. Aditya, U.Y.D. Prasanthi, and D.R.K. Reddy, ”Plane -symmetric dark energy model with a massive scalar field,” New Astron. 84, 101504 (2021), https://doi.org/10.1016/j.newast.2020.101504

P.S. Singh, and K.P. Singh, ”f (R, T) Gravity model behaving as a dark energy source,” New Astron. 84, 101542 (2021). https://doi.org/10.1016/j.newast.2020.101542

A.K. Biswal, K.L. Mahanta1, and P.K. Sahoo, ”Kalunza – Klein cosmological model in f (R, T) gravity with domain walls,” Astrophys Space Sci.359, 42 (2015), https://doi.org/10.1007/s10509-015-2493-2

K. Dasunaidu, Y. Aditya, and D.R.K. Reddy, ”Cosmic strings in a five dimensional spherically symmetric background in f (R, T) gravity,” Astrophysical Space Science, 363, 158 (2018). https://doi.org/10.1007/s10509-018-3380-4

D.D. Pawar, R.V. Mapari, and J.L. Pawade, ”Perfect fluid and heat flow in f (R, T) theory,” Pramana J. Phys. 95, 10 (2021). https://doi.org/10.1007/s12043-020-02058-w

P.H. Chavanis, ”A cosmological model describing the early inflation, the intermediate decelerating expansion and late accelerating expansion of the universe by a quadratic equation of state,” Universe, 1(3), 357 (2015). https://doi.org/10.3390/universe1030357

D.R.K. Reddy, K.S. Adhav, and M.A. Purandare, ”Bianchi type – I cosmological model with quadratic equation of state,” Astrophys. Space Sci. 357(1), 20 (2015). https://doi.org/10.1007/s10509-015-2302-y

K. Ananda, and M. Bruni, ”Cosmo-dynamics and dark energy with non-linear equation of state: a quadratic model,” (2005). https://doi.org/10.48550/arXiv.astro-ph/0512224

K. Ananda, and M. Bruni, Phys. Rev. D, ”Cosmological dynamics and dark energy with a quadratic equation of state: Anisotropic models, large – scale perturbations, and cosmological singularities,” 74, 023524 (2006). https://doi.org/10.1103/PhysRevD.74.023524

S. Nojiri, and S.D. Odintsov, ”Inhomogeneous equation of state of the universe: phantom era, future singularity and crossing the phantom barrier,” Phys. Rev. D, 72, 023003 (2005). https://doi.org/10.1103/PhysRevD.72.023003

S. Capozziello et al., ”Observational constraints on dark energy with generalized equation of state,” Phys. Rev. D, 73, 043512 (2006). https://doi.org/10.1103/PhysRevD.73.043512

C.R. Mahanta, S. Deka, and M.P. Das, ”Bianchi Type – V Universe with Time Varying Cosmological Constant and Quadratic Equation of State in f (R, T) Theory of Gravity,” East European Journal of Physics, 1, 44 (2023). https://doi.org/10.26565/2312-4334-2023-1

S. Ayug¨un, C. Aktas, B. Mishra, ”Quadratic equation of state solutions with Λ in f (R, T) gravitation theory,” Indian j Phys. 93, 407 (2019). https://doi.org/10.1007/s12648-018-1309-y

F. Rahman, M. Jamil, and K. Chakraborty, ”Construction of an electromagnetic mass model using quadratic equation of state,” (2009). https://arxiv.org/abs/0904.0189v3

P.H. Chavanis, ”A cosmological model based on a quadratic equation of state unifying vacuum energy, radiation and dark energy,” J. Gravity, 213(1), 682451 (2013). https://doi.org/10.1155/2013/682451

P.H. Chavanis, ”A cosmological model describing the early inflation, the intermediate decelerating expansion, and the late accelerating expansion by a quadratic equation of state,” (2013). http://arxiv.org/abs/1309.5784

T. Feroze, and A.A. Siddiqui, ”Charged anisotropic matter with quadratic equation of state,” General Relativity and Gravitation, 43(4), 1025-1035 (2011). https://doi.org/10.1007/s10714-010-1121-2

M. Malaver, ”Strange quark star model with quadratic equation of state,” Frontiers of Mathematics and Its Applications, 1(1), 9–15, (2014). https://arxiv.org/pdf/1407.0760

P. Bhar, K.N. Singh, and N. Pant, ”Compact stellar model obeying quadratic equation of state,” Astrophysics Space Science, 361(10), 343 (2016). https://doi.org/10.1007/s10509-016-2929-3

S.D. Maharaj, and P.M. Takisa, ”Regular models with quadratic equation of state,” General Relativity and Gravitation, 44(6), 1419–1432, (2012). (2013). https://doi.org/10.1007/s10714-012-1347-2

R. Sharma, and B.S. Ratanpal, ”Relativistic stellar model admitting a quadratic equation of state,” Int. J. Mod. Phys. D, 22(13), 1350074 (2013). https://doi.org/10.1142/S0218271813500740

G.P. Singh, and B.K. Bishi, ”Bianchi type – I Universe with cosmological constant and quadratic equation of state in f (R, T) modified gravity,” Advances in Higher Energy Physics, 2015, (2015). https://doi.org/10.1155/2015/816826

G.P. Singh, and B.K. Bishi, ”Bianchi type – I transit Universe in f (R, T) modified gravity with quadratic equation of state and Λ,” Astrophys. Space Sci. 360(1), 34 (2015). https://doi.org/10.1007/s10509-015-2495-0

D.D. Pawar, R.V. Mapari, and P.K. Agrawal, ”A modified holographic Ricci dark energy model in f (R, T) theory of gravity,” J. Astrophys. Astron. 40, 13 (2019). https://doi.org/10.1007/s12036-019-9582-5

D.D. Pawar, and R.V. Mapari, ”Plane Symmetry Cosmology Model of Interacting Field in f(R, T) Theory,” Journal of Dynamical Systems and Geometric Theories, 20(1), 115-136 (2022). https://doi.org/10.1080/1726037X.2022.2079268

D.D. Pawar, R.V. Mapari, and V.M. Raut, ”Magnetized Strange Quark Matter in Lyra Geometry,” Bulgarian Journal of Physics, 48, 225–235 (2021). https://www.bjp-bg.com/papers/bjp2021_3_225-235.pdf

Опубліковано
2023-09-04
Цитовано
Як цитувати
Такаре, В., Мапарі, Р., & Такре, С. (2023). П’ятивимірна плоска симетрична космологічна модель з квадратним рівнянням стану в f(R,T) теорії гравітації. Східно-європейський фізичний журнал, (3), 108-121. https://doi.org/10.26565/2312-4334-2023-3-08