Five - Dimensional Plane Symmetric Cosmological Model with Quadratic Equation of State in f(R,T) Theory of Gravity
Abstract
In this paper, we analysed the five-dimensional plane-symmetric cosmological model containing perfect fluid in the context of f(R, T) gravity. Field equations have solved for two class of f(R, T) gravity i.e., f(R, T) = R + f(T) and f(R, T) = f1(R)f2(T) with the inclusion of cosmological constant Λ and quadratic equation of state parameters in the form p = αρ2 − ρ, where α is a constant and strictly α≠ 0. In order to derive the exact solutions, we utilize volumetric power law and exponential law of expansion. The physical and geometrical aspects of model have discussed.
Downloads
References
A.G. Riess, A.V. Fillippenko, P. Cgallis, et al., ”Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron J. 116(3), 1009 (1998). https://doi.org/10.1086/300499
S. Perlmutter, G. Aldering, G. Goldhaber, et al., ”Measurement of Ω and Λ from 42 High – redshift Supernovae,” Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221.
W.J. Percival, ”The build – up of haloes within Press – Schechter theory,” Mon. Not. R. Astron. Soc. 327, 1313(2001). https://doi.org/10.1046/j.1365-8711.2001.04837.x
R. Jimenez, L. Verde, T. Tren, and D. Stern, ”Constraint on the equation of state of dark energy and Hubble constant from stellar ages and the CMB,” Astrophys. J. 593, 622 (2003). https://doi.org/10.1086/376595
D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and S.A. Stanford, ”Cosmic chronometers: constraining the equation of state of dark energy. I : H(z) measurements,” J. Cosmolo. Astropart. Phys. 2, 8 (2010). https://doi.org/10.48550/arXiv.0907.3149.
J. Martin, ”Quintessence: A Mini-Review,” Mod. Phys. Lett. A, 23, 1252 (2008). http:/doi.org/10.1142/S0217732308027631
S. Nojiri, S. D. Odintsov, and M. Sami, ”Dark energy cosmology from higher – order, string-inspired gravity and its reconstruction,” Phys. Rev. D, 74, 046004 (2006), https://doi.org/10.1103/PhysRevD.74.046004
N. Bilic¸ fortschritte der Physik, ”Thermodynamics of dark energy,” 56, 363 (2008). https://doi.org/10.1002/prop.200710507
K. Karami, S. Ghaffari, and J. Fehri, ”Interacting polytropic gas model of phantom dark energy in non – flat universe,” Eur. Phys. J. C, 64(1), 85 (2009)https://doi.org/10.1140/epjc/s10052-009-1120-1
T.Chiba, T. Okabe, and M. Yamaguchi, ”Kinetically driven quintessence,” Phys. Rev. D, 62, 023511 (2000). https://doi.org/10.1103/PhysRevD.62.023511
T. Padmanabhan, and T. R. Chaudhury, ”Can the clustered dark matter and the smooth dark energy arise from the same scalar field?” Phys. Rev. D, 66, 081301(2002). https://doi.org/10.1103/PhysRevD.62.023511
M.C. Bento, O. Bertolami, and A.A. Sen, ”Generalized Chaplygin gas, accelerated expansion and dark energy – matter unification,” Phys. Rev. D, 66, 043507 (2002), https://doi.org/10.1103/PhysRevD.66.043507.
A. Kamenshchik, U. Moschella, and V. Pasquier,” An alternative to quintessence,” Phys. Lett. B, 511, 265 (2001), https://doi.org/10.1016/S0370-2693(01)00571-8.
P. J. E. Peebles, and B. Ratra, ”The cosmological constant and dark energy,” Rev. Mod. Phys. 75, 559 (2003), https://doi.org/10.1103/RevModPhys.75.559.
V. Sahni, and A. Starobinsky, ”The Case for a Positive Cosmological Λ-Term,” Int. J. Mod. Phy. D, 9, 373 (2000), https://doi.org/10.1142/S0218271800000542.
R. Ferraro, and F. Fiorini, ”Modified teleparallel gravity: inflation without an inflaton,” Phys. Rev. D, 75, 084031, (2007), https://doi.org/10.1103/PhysRevD.75.084031.
G.R. Bengochea, and R. Ferraro, ”Dark torsion as the cosmic speed-up,” Phys. Rev. D, 79, 124019 (2009). https://doi.org/10.1103/PhysRevD.79.124019
A. De Felice, and S. Tsujikawa, ”Construction of cosmologically viable f(G) gravity models,” Phys. Lett. B, 675, 1 (2009), https://doi.org/10.48550/arXiv.0810.5712
T. Harko, F.S.N. Lobo, S. Nojiri, and S.D. Odintsov, ”f (R, T)gravity,” Phys. Rev. D, 84, 024020 (2011), https://doi.org/10.1103/PhysRevD.84.024020
V.R. Chirde, and S.H. Shekh, ”Plane Symmetric Dark Energy Models in the form of Wet Dark Fluid in f (R, T) Gravity,” J. Astrophys. Astr. 37, 15 (2016).https://doi.org/10.1007/s12036-016-9391-z
P.K. Agrawal, and D.D. Pawar, ”Plane Symmetric Cosmological Model with Quark and Strange Quark Matter in f (R, T) Theory of Gravity,” J. Astrophys. Astr. 38, 2, (2017). https://doi.org/10.1007/s12036-016-9420-y
M. Farasat Shamir, ”Plane Symmetric Solutions in f (R, T) Gravity,” Commun. Theor. Phys. 65, 301–307,(2016), https://doi.org/10.1088/0253-6102/65/3/301
A.Y. Shaikh, and S.R. Bhoyar, ”Plane symmetric cosmological model with Λ in f (R, T) Gravity,” Prespacetime Journal, 6, 11 (2015). https://www.prespacetime.com/index.php/pst/article/view/839/826
M. Mollah, K. Singh, and P.S. Singh, ”Bianchi type-III cosmological model with quadratic EoS in Lyra geometry,” International Journal of Geometric Method in Modern physics, 15(11), 1850194 (2018), 10.1142/S0219887818501943
S. D. Katore, K. S. Adhav, A.Y. Shaikh, et al., ”Plane symmetric cosmological models with dark energy,” Astrophys. Space Sci. 333, 333–341 (2011), https://doi.org/10.1007/s10509-011-0622-0
K.S. Adhav, ”LRS Bianchi type -I cosmological model in f (R, T) theory of gravity,” Astrophys. Space Sci. 339, 365–369 (2012), https://doi.org/10.1007/s10509-011-0963-8.
V. Singh, and A. Beesham, ”LRS Bianchi I model with constant expansion rate in f (R, T) gravity,” Astrophys. Space Sci. 365, 125 (2020). https://doi.org/10.1007/s10509-020-03839-w
R. Nagpal, J.K. Singh, A. Beesham, and H. Shabani, ”Cosmological aspects of a hyperbolic solution in in f (R, T) gravity,” Ann. Phys.405, 234 (2019), https://doi.org/10.1016/j.aop.2019.03.015
R. Nagpal, S.K.J. Pacif, J K. Singh, K. Bamba, and A. Beesham, ”Analysis with observational constraints in Λ – cosmology in f (R, T) gravity,” Eur. Phys. J. C, 78, 946 (2018), https://doi.org/10.1140/epjc/s10052-018-6403-y
J.K. Singh, K. Bamba, R. Nagpal, and S.K.J. Pacif, ”Bouncing cosmology in f (R, T) gravity,” Phys. Rev. D, 97, 123536 (2018), https://doi.org/10.1103/PhysRevD.97.123536
S.D. Katore, and S.P. Hatkar, ”Bianchi type – III and Kantowski – Sachs domain wall cosmological models in the f (R, T) theory of gravitation,” Prog. Theor. Exp. Phys. 216, 033E01 (2016), https://doi.org/10.1093/ptep/ptw009
M.S. Singh, and S.S. Singh, ”Cosmological Dynamics of Anisotropic Dark Energy in f (R, T) Gravity,” New Astron. 72, 36-41 (2019), https://doi.org/10.1016/j.newast.2019.03.007
Y. Aditya, U.Y.D. Prasanthi, and D.R.K. Reddy, ”Plane -symmetric dark energy model with a massive scalar field,” New Astron. 84, 101504 (2021), https://doi.org/10.1016/j.newast.2020.101504
P.S. Singh, and K.P. Singh, ”f (R, T) Gravity model behaving as a dark energy source,” New Astron. 84, 101542 (2021). https://doi.org/10.1016/j.newast.2020.101542
A.K. Biswal, K.L. Mahanta1, and P.K. Sahoo, ”Kalunza – Klein cosmological model in f (R, T) gravity with domain walls,” Astrophys Space Sci.359, 42 (2015), https://doi.org/10.1007/s10509-015-2493-2
K. Dasunaidu, Y. Aditya, and D.R.K. Reddy, ”Cosmic strings in a five dimensional spherically symmetric background in f (R, T) gravity,” Astrophysical Space Science, 363, 158 (2018). https://doi.org/10.1007/s10509-018-3380-4
D.D. Pawar, R.V. Mapari, and J.L. Pawade, ”Perfect fluid and heat flow in f (R, T) theory,” Pramana J. Phys. 95, 10 (2021). https://doi.org/10.1007/s12043-020-02058-w
P.H. Chavanis, ”A cosmological model describing the early inflation, the intermediate decelerating expansion and late accelerating expansion of the universe by a quadratic equation of state,” Universe, 1(3), 357 (2015). https://doi.org/10.3390/universe1030357
D.R.K. Reddy, K.S. Adhav, and M.A. Purandare, ”Bianchi type – I cosmological model with quadratic equation of state,” Astrophys. Space Sci. 357(1), 20 (2015). https://doi.org/10.1007/s10509-015-2302-y
K. Ananda, and M. Bruni, ”Cosmo-dynamics and dark energy with non-linear equation of state: a quadratic model,” (2005). https://doi.org/10.48550/arXiv.astro-ph/0512224
K. Ananda, and M. Bruni, Phys. Rev. D, ”Cosmological dynamics and dark energy with a quadratic equation of state: Anisotropic models, large – scale perturbations, and cosmological singularities,” 74, 023524 (2006). https://doi.org/10.1103/PhysRevD.74.023524
S. Nojiri, and S.D. Odintsov, ”Inhomogeneous equation of state of the universe: phantom era, future singularity and crossing the phantom barrier,” Phys. Rev. D, 72, 023003 (2005). https://doi.org/10.1103/PhysRevD.72.023003
S. Capozziello et al., ”Observational constraints on dark energy with generalized equation of state,” Phys. Rev. D, 73, 043512 (2006). https://doi.org/10.1103/PhysRevD.73.043512
C.R. Mahanta, S. Deka, and M.P. Das, ”Bianchi Type – V Universe with Time Varying Cosmological Constant and Quadratic Equation of State in f (R, T) Theory of Gravity,” East European Journal of Physics, 1, 44 (2023). https://doi.org/10.26565/2312-4334-2023-1
S. Ayug¨un, C. Aktas, B. Mishra, ”Quadratic equation of state solutions with Λ in f (R, T) gravitation theory,” Indian j Phys. 93, 407 (2019). https://doi.org/10.1007/s12648-018-1309-y
F. Rahman, M. Jamil, and K. Chakraborty, ”Construction of an electromagnetic mass model using quadratic equation of state,” (2009). https://arxiv.org/abs/0904.0189v3
P.H. Chavanis, ”A cosmological model based on a quadratic equation of state unifying vacuum energy, radiation and dark energy,” J. Gravity, 213(1), 682451 (2013). https://doi.org/10.1155/2013/682451
P.H. Chavanis, ”A cosmological model describing the early inflation, the intermediate decelerating expansion, and the late accelerating expansion by a quadratic equation of state,” (2013). http://arxiv.org/abs/1309.5784
T. Feroze, and A.A. Siddiqui, ”Charged anisotropic matter with quadratic equation of state,” General Relativity and Gravitation, 43(4), 1025-1035 (2011). https://doi.org/10.1007/s10714-010-1121-2
M. Malaver, ”Strange quark star model with quadratic equation of state,” Frontiers of Mathematics and Its Applications, 1(1), 9–15, (2014). https://arxiv.org/pdf/1407.0760
P. Bhar, K.N. Singh, and N. Pant, ”Compact stellar model obeying quadratic equation of state,” Astrophysics Space Science, 361(10), 343 (2016). https://doi.org/10.1007/s10509-016-2929-3
S.D. Maharaj, and P.M. Takisa, ”Regular models with quadratic equation of state,” General Relativity and Gravitation, 44(6), 1419–1432, (2012). (2013). https://doi.org/10.1007/s10714-012-1347-2
R. Sharma, and B.S. Ratanpal, ”Relativistic stellar model admitting a quadratic equation of state,” Int. J. Mod. Phys. D, 22(13), 1350074 (2013). https://doi.org/10.1142/S0218271813500740
G.P. Singh, and B.K. Bishi, ”Bianchi type – I Universe with cosmological constant and quadratic equation of state in f (R, T) modified gravity,” Advances in Higher Energy Physics, 2015, (2015). https://doi.org/10.1155/2015/816826
G.P. Singh, and B.K. Bishi, ”Bianchi type – I transit Universe in f (R, T) modified gravity with quadratic equation of state and Λ,” Astrophys. Space Sci. 360(1), 34 (2015). https://doi.org/10.1007/s10509-015-2495-0
D.D. Pawar, R.V. Mapari, and P.K. Agrawal, ”A modified holographic Ricci dark energy model in f (R, T) theory of gravity,” J. Astrophys. Astron. 40, 13 (2019). https://doi.org/10.1007/s12036-019-9582-5
D.D. Pawar, and R.V. Mapari, ”Plane Symmetry Cosmology Model of Interacting Field in f(R, T) Theory,” Journal of Dynamical Systems and Geometric Theories, 20(1), 115-136 (2022). https://doi.org/10.1080/1726037X.2022.2079268
D.D. Pawar, R.V. Mapari, and V.M. Raut, ”Magnetized Strange Quark Matter in Lyra Geometry,” Bulgarian Journal of Physics, 48, 225–235 (2021). https://www.bjp-bg.com/papers/bjp2021_3_225-235.pdf
Copyright (c) 2023 V.A. Thakare, Rahul V. Mapari, S.S. Thakre
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).