Структурні варіації пилових акустичних солітарних хвиль (ПАСХ), які поширюються в неоднорідній плазмі

  • Хірак Джиоті Дехінгія Факультет математики, Університет Дібругарх, Ассам, Індія https://orcid.org/0000-0002-3119-0842
  • П.Н. Дека Факультет математики, Університет Дібругарх, Ассам, Індія https://orcid.org/0000-0001-9485-9294
Ключові слова: пилова плазма, метод редуктивних збурень (RPT), ізотермічні електрони, неоднорідна плазма

Анотація

Ця стаття представляє наші теоретичні дослідження структурних варіацій пилових акустичних солітонних хвиль (DASW) у неоднорідній ненамагніченій плазмі. Для вивчення структурних варіацій DASW ми розглянули беззіткнівний, гарячий ізотермічний і больцманівський розподіл електронів-іонів з негативно зарядженими порошинками в слабо неоднорідній плазмі. Ми використали метод редуктивних збурень (RPT) у керуючих рівняннях плазми, вивели модифіковане рівняння Кортевега-де-Фріза (m-KdV) і отримали розв’язок із самотньою хвилею. Ми розглянули відповідні розтягнуті координати для просторових і часових змінних для неоднорідної плазми. У цій статті досліджено вплив частинок пилу на поширення іонно-акустичних солітонних хвиль у моделі неоднорідної плазми. Ми також включили вплив параметрів неоднорідності на солітонні структури.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

L. Spitzer Jr., “Review of Publications: Physical Processes in the Interstellar Medium”, Journal of the Royal Astronomical Society of Canada, 72, 349 (1978).

B.A. Smith, L. Soderblom, R. Batson, P. Bridges, J.A.Y. Inge, H. Masursky, E. Shoemaker, et al., “A new look at the Saturn system: The Voyager 2 images”, Science, 215(4532), 504-537 (1982). https://doi.org/10.1126/science.215.4532.504

K.G. Spears, T.J. Robinson, and R.M. Roth, “Particle distributions and laser-particle interactions in an RF discharge of silane”, IEEE transactions on plasma science, 14(2), 179-187 (1986). https://doi.org/10.1109/TPS.1986.4316521

W. Xu, B. Song, R.L. Merlino, and N. D’Angelo, “A dusty plasma device for producing extended, steady state, magnetized, dusty plasma columns”, Review of scientific instruments, 63(11), 5266 (1992). https://doi.org/10.1063/1.1143438

D.P. Sheehan, M. Carillo, and W. Heidbrink, “Device for dispersal of micrometer‐and submicrometer‐sized particles in vacuum”, Review of scientific instruments, 61(12), 3871-3875 (1990). https://doi.org/10.1063/1.1141515

C.K. Goertz, “Dusty plasmas in the solar system”, Reviews of Geophysics, 27(2), 271-292 (1989). https://doi.org/10.1029/RG027i002p00271

T.G. Northrop, “Dusty plasmas”, Physica Scripta, 45(5), 475 (1992). https://doi.org/10.1088/0031-8949/45/5/011

N.N. Rao, P.K. Shukla, and M.Y. Yu, “Dust-acoustic waves in dusty plasmas”, Planetary and space science, 38(4), 543 (1990). https://doi.org/10.1016/0032-0633(90)90147-I

P.K. Shukla, and V.P. Silin, “Dust ion-acoustic wave”, Physica Scripta, 45(5), 508. https://doi.org/10.1088/0031-8949/45/5/015

F. Melandso, “Lattice waves in dust plasma crystals”, Physics of Plasmas, 3(11), 3890 (1996). https://doi.org/10.1063/1.871577

A. Barkan, N. D’Angelo, and R.L. Merlino, “Experiments on ion-acoustic waves in dusty plasmas”, Planetary and Space Science, 44(3), 239 (1996). https://doi.org/10.1016/0032-0633(95)00109-3

A. Barkan, R.L. Merlino, and N. D’Angelo, “Laboratory observation of the dust‐acoustic wave mode”, Physics of Plasmas, 2(10), 3563-3565 (1995). https://doi.org/10.1063/1.871121

F. Verheest, “Waves and instabilities in dusty space plasmas”, Space Science Reviews, 77(3), 267 (1996). https://doi.org/10.1007/BF00226225

P.K. Shukla, “A survey of dusty plasma physics”, Physics of Plasmas, 8(5), 1791 (2001). https://doi.org/10.1063/1.1343087

F. Verheest, Waves in dusty space plasmas, Vol. 245, (Springer Science, Business Media, 2000).

P.K. Shukla, and A.A. Mamun, Introduction to dusty plasma physics, (Institute of Physics Publishing Ltd, Bristol, 2015), pp. 450. ISBN 9781420034103.

M.G.M. Anowar, and A.A. Mamun, “Effects of two-temperature electrons and trapped ions on multidimensional instability of dust-acoustic solitary waves”, IEEE Transactions on plasma science, 37(8), 1638 (2009). https://doi.org/10.1109/TPS.2009.2024668

T.K. Baluku, and M.A. Hellberg, “Kinetic theory of dust ion acoustic waves in a kappa-distributed plasma”, Physics of Plasmas, 22(8), 083701 (2015). https://doi.org/10.1063/1.4927581

H. Alinejad, and V. Khorrami, “Effects of Polarized Debye Sheath and Trapped Ions on Solitary Structures in a Strongly Coupled Inhomogeneous Dusty Plasma”, IEEE Transactions on Plasma Science, 46(4), 755 (2017). https://doi.org/10.1109/TPS.2017.2749382

A. Atteya, M.A. El-Borie, G.D. Roston, and A.S. El-Helbawy, “Nonlinear dust acoustic waves in an inhomogeneous magnetized quantum dusty plasma”, Waves in Random and Complex Media, 31, 1 (2021). https://doi.org/10.1080/17455030.2021.1880030

R. Bharuthram, and P.K. Shukla, “Large amplitude ion-acoustic solitons in a dusty plasma”, Planetary and space science, 40(7), 973 (1992). https://doi.org/10.1016/0032-0633(92)90137-D

A.A. Mamun, and P.K. Shukla, “Cylindrical and spherical dust ion–acoustic solitary waves”, Physics of Plasmas, 9(4), 1468 (2002). https://doi.org/10.1063/1.1458030

P.K. Shukla, “Dust ion-acoustic shocks and holes”, Physics of Plasmas, 7(3), 1044 (2000). https://doi.org/10.1063/1.873905

S.I. Popel, M.Y. Yu, and V.N. Tsytovich, “Shock waves in plasmas containing variable‐charge impurities”, Physics of Plasmas, 3(12), 4313 (1996). https://doi.org/10.1063/1.872048

F. Melandsø, and P.K. Shukla, “Theory of dust-acoustic shocks”, Planetary and Space Science, 43(5), 635 (1995). https://doi.org/10.1016/0032-0633(94)00200-B

P.K. Shukla, and A.A. Mamun, “Dust-acoustic shocks in a strongly coupled dusty plasma”, IEEE transactions on plasma science, 29(2), 221 (2001). https://doi.org/10.1109/27.923698

A.A. Mamun, R.A. Cairns, and P.K. Shukla, “Solitary potentials in dusty plasmas”, Physics of Plasmas, 3(2), 702-704 (1996). https://doi.org/10.1063/1.871905

J.X. Ma, and J. Liu, “Dust-acoustic soliton in a dusty plasma”, Physics of plasmas, 4(2), 253 (1997). https://doi.org/10.1063/1.872086

B. Farokhi, P.K. Shukla, N.L. Tsintsadze, and D.D. Tskhakaya, “Linear and nonlinear dust lattice waves in plasma crystals”, Physics Letters A, 264(4), 318 (1999). https://doi.org/10.1016/S0375-9601(99)00820-8

H.U. Rehman, “Electrostatic dust acoustic solitons in pair-ion-electron plasmas”, Chinese Physics Letters, 29(6), 065201 (2012). https://doi.org/10.1088/0256-307X/29/6/065201

S.K. El-Labany, W.F. El-Taibany, A.E. El-Samahy, A.M. Hafez, and A. Atteya, “Higher-order corrections to nonlinear dust-ion-acoustic shock waves in a degenerate dense space plasma”, Astrophysics and Space Science, 354(2), 385 (2014). https://doi.org/10.1007/s10509-014-2096-3

L.B. Gogoi, and P.N. Deka, “Propagation of dust acoustic solitary waves in inhomogeneous plasma with dust charge fluctuations”, Physics of Plasmas, 24(3), 033708 (2017). https://doi.org/10.1063/1.4977988

A. Atteya, S. Sultana, and R. Schlickeiser, “Dust-ion-acoustic solitary waves in magnetized plasmas with positive and negative ions: The role of electrons superthermality”, Chinese journal of physics, 56(5), 1931 (2018). https://doi.org/10.1016/j.cjph.2018.09.002

W.F. El-Taibany, W.M. Moslem, M. Wadati, and P.K. Shukla, “On the instability of electrostatic waves in a nonuniform electron–positron magnetoplasma”, Physics Letters A, 372(22), 4067 (2008). https://doi.org/10.1016/j.physleta.2008.03.024

N. Akhtar, S.A. El-Tantawy, S. Mahmood, and A.M. Wazwaz, “On the dynamics of dust-acoustic and dust-cyclotron freak waves in a magnetized dusty plasma”, Romanian Reports in Physics, 71, 403 (2019). https://rrp.nipne.ro/2019/AN71403.pdf

H. Ur-Rehman, S. Mahmood, and S. Hussain, “Magneto-acoustic solitons in pair-ion fullerene plasma”, Waves in Random and Complex Media, 30(4), 632 (2020). https://doi.org/10.1080/17455030.2018.1549762

H. Washimi, and T. Taniuti, “Propagation of ion-acoustic solitary waves of small amplitude”, Physical Review Letters, 17(19), 996 (1966). https://doi.org/10.1103/PhysRevLett.17.996

Y. Kodama, and T. Taniuti, “Higher order approximation in the reductive perturbation method. I. The weakly dispersive system”, Journal of the Physical Society of Japan, 45(1), 298 (1978). https://doi.org/10.1143/JPSJ.45.298

H.R. Pakzad, and D. Nobahar, “Dust-ion acoustic solitons in superthermal dusty plasmas”, New Astronomy, 93, 101752 (2022). https://doi.org/10.1016/j.newast.2021.101752

N.N. Rao, and P.K. Shukla, “Nonlinear dust-acoustic waves with dust charge fluctuations”, Planetary and Space Science, 42(3), 221 (1994). https://doi.org/10.1016/0032-0633(94)90084-1

H.J. Dehingia, and P.N. Deka, Structural Variations of Ion-Acoustic Solitons, in Nonlinear Dynamics and Applications, (Springer, Cham., 2022), pp. 97-104. https://doi.org/10.1007/978-3-030-99792-2_8

Опубліковано
2023-03-02
Цитовано
Як цитувати
Дехінгія, Х. Д., & Дека, П. (2023). Структурні варіації пилових акустичних солітарних хвиль (ПАСХ), які поширюються в неоднорідній плазмі. Східно-європейський фізичний журнал, (1), 19-27. https://doi.org/10.26565/2312-4334-2023-1-02
Розділ
Статті