Instability of Ion Cyclotron Waves (ICWS) at the Expense of Lower Hybrid Drift Waves (LHDWS) Turbulence Energy
Abstract
Instability of ion cyclotron waves(ICWs) is investigated in presence of lower hybrid drift waves(LHDWs) turbulence. Plasma inhomogeneity in the Earth’s magnetopause region supports a range of low frequency drift wave turbulent fields due to gradients in density in different regions of the media. One of these drift phenomena is identified as lower hybrid drift waves (LHDWs) which satisfies resonant conditions ω − k · v = 0. We have considered a nonlinear wave-particle interaction model where the resonant wave that accelerates the particle in magnetopause may transfer its energy to ion cyclotron waves through a modulated field. In spite of the frequency gaps between the two waves, energy can be transferred nonlinearly to generate unstable ion cyclotron waves which always do not satisfy the resonant condition Ω−K · v ≠ 0 and the nonlinear scattering condition Ω − ω − (K − k) · v ̸= 0. Here, ω and Ω are frequencies of the resonant and the nonresonant waves respectively and k and K are the corresponding wave numbers. We have obtained a nonlinear dispersion relation for ion cyclotron waves(ICWs) in presence of lower hybrid drift waves(LHDWs)
turbulence. The growth rate of the ion cyclotron waves using space observational data in the magnetopause region has been estimated.
Downloads
References
Cecilia Norgren, Swedish Institute of Space Physics and Department of Physics and Astronomy, Uppsala University, Sweden, ISSN: 1401-5757, UPTEC F 11 057 (2011)
J.D. Huba, N.T. Gladd, and K. Papadopoulos, ”Lower-hybrid-drift wave turbulence in the distant magnetotail,” J. Geophys. Res. 83(A11), 5217–5226 (1978). https://doi.org/10.1029/JA083iA11p05217
S.D. Bale, F.S. Mozer, and T. Phan, ”Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause,” Geophys. Res. Lett. 29(24), 2180 (2002). https://doi.org/10.1029/2002GL016113
T.A. Carter, M. Yamada, H. Ji, R.M. Kulsrud, and F. Trintchouk, ”Experimental study of lower-hybrid drift turbulence in a reconnecting current sheet,” Phys. Plasmas, 9(8), 3272–3288 (2002). https://doi.org/10.1063/1.1494433
W. Fox, M. Porkolab, J. Egedal, N. Katz, and A. Le, ”Laboratory observations of electron energization and associated lower-hybrid and Trivelpiece–Gould wave turbulence during magnetic reconnection,” Phys. Plasmas, 17(7), 072303 (2010). https://doi.org/10.1063/1.3435216
J.D. Menietti, P. Schippers, O. Santol´ık, D.A. Gurnett, F. Crary, and A.J. Coates, ”Ion cyclotron harmonics in the Saturn downward current auroral region,” J. Geophys. Res. 116, A12234 (2011). https://doi.org/10.1029/2011JA017102
G. Praburam, Ph.D.Thesis, Department of Physics, Indian Institute of Technology, Delhi, India (1989). http://eprint.iitd.ac.in/handle/2074/4073
G.V. Khazanov, S. Boardsen, E.N. Krivorutsky, M.J. Engebretson, D. Sibeck, S. Chen, and A. Breneman, ”Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B,” J. Geophys. Res. Space Physics, 122, 449–463 (2017). https://doi.org/10.1002/2016JA022814
G. Fruit, P. Louarn, and A. Tur, ”Electrostatic drift instability in a magnetotail configuration: The role of bouncing electrons,” Phys. Plasmas, 24(3), 032903 (2017). https://doi.org/10.1063/1.4978566
M. Singh, and P.N. Deka, ”Plasma-maser Effect in Inhomogeneous Plasma in the Presence of Drift Wave Turbulence,” Phys. Plasmas, 12(10), 102304 (2005). https://doi.org/10.1063/1.2087587
P.N. Deka, and A. Borgohain, ”On unstable electromagnetic radiation through nonlinear wave–particle interactions in presence of drift wave turbulence,” J.Plasma Phys. 78(5), 515-524 (2012). https://doi.org/10.1017/S0022377812000207
P. Senapati, and P.N. Deka, ”Instability of Electron Bernstein Mode in Presence of DriftWave Turbulence Associated with Density and Temperature Gradients,” J. Fusion Energy, 39, 477–490 (2020). https://doi.org/10.1007/s10894-020-00269-y
J.K. Deka, and P.N. Deka, ”Emission of whistler mode radiation with kinetic Alfven wave in burning plasma,” Eur. Phys. J. Plus, 137, 1116 (2022). https://doi.org/10.1140/epjp/s13360-022-03330-1
A. Kumar, R. Gupta, and J. Sharma, ”Electromagnetic Weibel instability in spatial anisotropic electron–ion plasmas,” AIP Advances, 12(6), 065013 (2022). https://doi.org/10.1063/5.0092835
M. Nambu, Laser Part. Beams, ”A new maser effect in plasma turbulence,” 1, 427 (1983). https://doi.org/10.1017/S0263034600000513
V.N. Tsytovich, ”Mechanism for wave absorption or amplification in stochastic acceleration of particles,” Sov. Phys. JETP, 62, 483-488 (1985). http://www.jetp.ras.ru/cgi-bin/dn/e_062_03_0483.pdf
S.P. Gary, Theory of Space Plasma Microinstabilities, (Cambridge University Press, Cambridge, UK, 1993).
M. Nambu, ”Interaction between the Electron-Cyclotron Emissions at (n+1/2)Ωe and the Ring-Current Protons in Space,” Phys. Rev. Lett. 34, 387 (1975). https://doi.org/10.1103/PhysRevLett.34.387
M. Nambu, S. Bujarbarua, and S.N. Sarma, ”Plasma maser theory for magnetized plasma,” Phys. Rev. A, 35, 798 (1987). https://doi.org/10.1103/PhysRevA.35.798
L.D. Landau, ”On the vibration of the electronic plasma,” J. Phys. USSR, 10, 25 (1946).
T.H. Stix, Waves in Plasma, ()AIP, New York, 1992).
N.A. Krall, and A.W. Trivelpiece, Principles of Plasma Physics, (McGraw Hill Kogakusha Ltd., New York, 1973). https://doi.org/10.1119/1.1987587
S. Ichimaru, Basic Principles Of Plasma Physics: A Statistical Approach. 1st ed. (CRC Press, 1973). https://doi.org/10.1201/9780429502118
F. Chen, Introduction to Plasma Physics, (Plenum Press, New York, 1974).
M. Singh, P.N. Deka, ”Plasma-maser instability of the ion acoustics wave in the presence of lower hybrid wave turbulence in inhomogeneous plasma,” Pramana - J. Phys. 66, 547–561 (2006). https://doi.org/10.1007/BF02704498
T.J. Bradley, S.W. Cowley, G. Provan, G.J. Hunt, E.J. Bunce, et al., ”Field-Aligned Currents in Saturn’s Nightside Magnetosphere: Subcorotation and Planetary Period Oscillation Components During Northern Spring,” J. Geophys. Res. 123, 3602-3636 (2018). https://api.semanticscholar.org/CorpusID:54949745
P.N. Deka, and A. Borgohain, ”Amplification of ion acoustic wave in an inhomogeneous plasma through nonlinear wave-particle interaction with drift wave turbulence,” Phys.Plasmas, 18, 042311 (2011). https://api.semanticscholar.org/CorpusID:120942154
X. Tang, C. Cattell, R. Lysak, L.B. Wilson, L. Dai, and S. Thaller, ”THEMIS observations of electrostatic ion cyclotron waves and associated ion heating near the Earth’s dayside magnetopause,” J. Geophys. Res. Solid Earth, 120(5), 3380-3392 (2015). https://doi.org/10.1002/2015JA020984
M. Rosenberg, and R. Merlino, ”Instability of higher harmonic electrostatic ion cyclotron waves in a negative ion plasma,” J. Plasma Phys. 75, 495-508 (2009). https://api.semanticscholar.org/CorpusID:11846857
V. Khaira, and G. Ahirwar, ”Dispersion relation of electrostatic ion cyclotron waves in multi-component magnetoplasma,” AIP Conf. Proc. 1670(1), 030016 (2015). https://doi.org/10.1063/1.4926700
S.P. Gary, ”Wave-particle transport from electrostatic instabilities,” Phys. Fluids, 23(6), 1193–1204 (1980). https://doi.org/10.1063/1.863120
M. Malingre, R. Pottelette, N. Dubouloz, P.A. Lindqvist, G. Holmgren, and B. Aparicio, ”Sporadic electromagnetic emissions in the Akr frequency range associated with electrostatic plasma turbulence,” Geophys. Res. Lett. 19, 1339-1342 (1992). https://doi.org/10.1029/92GL01154
J. Ben´aˇcek, M. Karlick´y and L.V. Yasnov, ”Temperature dependent growth rates of the upper-hybrid waves and solar radio zebra patterns,” A&A, 598, A106 (2017). https://doi.org/10.1051/0004-6361/201629717
A.B. Zylstra, O.A. Hurricane, D.A. Callahan, A.L. Kritcher, J.E. Ralph, H.F. Robey, J.S. Ross, et al., ”Burning plasma achieved in inertial fusion,” Nature, 601(7894), 542–548 (2022). https://doi.org/10.1038/s41586-021-04281-w
Copyright (c) 2023 Raksha Mundhra, P.N. Deka
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).