Instability of Ion Cyclotron Waves (ICWS) at the Expense of Lower Hybrid Drift Waves (LHDWS) Turbulence Energy

Keywords: Ion Cyclotron waves, Lower Hybrid Drift Waves, Wave Amplification, Density Gradient, Non-linear wave particle interaction

Abstract

Instability of ion cyclotron waves(ICWs) is investigated in presence of lower hybrid drift waves(LHDWs) turbulence. Plasma inhomogeneity in the Earth’s magnetopause region supports a range of low frequency drift wave turbulent fields due to gradients in density in different regions of the media. One of these drift phenomena is identified as lower hybrid drift waves (LHDWs) which satisfies resonant conditions ω − k · v = 0. We have considered a nonlinear wave-particle interaction model where the resonant wave that accelerates the particle in magnetopause may transfer its energy to ion cyclotron waves through a modulated field. In spite of the frequency gaps between the two waves, energy can be transferred nonlinearly to generate unstable ion cyclotron waves which always do not satisfy the resonant condition Ω−K · v ≠ 0 and the nonlinear scattering condition Ω − ω − (Kk) · v ̸= 0. Here, ω and Ω are frequencies of the resonant and the nonresonant waves respectively and k and K are the corresponding wave numbers. We have obtained a nonlinear dispersion relation for ion cyclotron waves(ICWs) in presence of lower hybrid drift waves(LHDWs)
turbulence. The growth rate of the ion cyclotron waves using space observational data in the magnetopause region has been estimated.

Downloads

Download data is not yet available.

References

Cecilia Norgren, Swedish Institute of Space Physics and Department of Physics and Astronomy, Uppsala University, Sweden, ISSN: 1401-5757, UPTEC F 11 057 (2011)

J.D. Huba, N.T. Gladd, and K. Papadopoulos, ”Lower-hybrid-drift wave turbulence in the distant magnetotail,” J. Geophys. Res. 83(A11), 5217–5226 (1978). https://doi.org/10.1029/JA083iA11p05217

S.D. Bale, F.S. Mozer, and T. Phan, ”Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause,” Geophys. Res. Lett. 29(24), 2180 (2002). https://doi.org/10.1029/2002GL016113

T.A. Carter, M. Yamada, H. Ji, R.M. Kulsrud, and F. Trintchouk, ”Experimental study of lower-hybrid drift turbulence in a reconnecting current sheet,” Phys. Plasmas, 9(8), 3272–3288 (2002). https://doi.org/10.1063/1.1494433

W. Fox, M. Porkolab, J. Egedal, N. Katz, and A. Le, ”Laboratory observations of electron energization and associated lower-hybrid and Trivelpiece–Gould wave turbulence during magnetic reconnection,” Phys. Plasmas, 17(7), 072303 (2010). https://doi.org/10.1063/1.3435216

J.D. Menietti, P. Schippers, O. Santol´ık, D.A. Gurnett, F. Crary, and A.J. Coates, ”Ion cyclotron harmonics in the Saturn downward current auroral region,” J. Geophys. Res. 116, A12234 (2011). https://doi.org/10.1029/2011JA017102

G. Praburam, Ph.D.Thesis, Department of Physics, Indian Institute of Technology, Delhi, India (1989). http://eprint.iitd.ac.in/handle/2074/4073

G.V. Khazanov, S. Boardsen, E.N. Krivorutsky, M.J. Engebretson, D. Sibeck, S. Chen, and A. Breneman, ”Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B,” J. Geophys. Res. Space Physics, 122, 449–463 (2017). https://doi.org/10.1002/2016JA022814

G. Fruit, P. Louarn, and A. Tur, ”Electrostatic drift instability in a magnetotail configuration: The role of bouncing electrons,” Phys. Plasmas, 24(3), 032903 (2017). https://doi.org/10.1063/1.4978566

M. Singh, and P.N. Deka, ”Plasma-maser Effect in Inhomogeneous Plasma in the Presence of Drift Wave Turbulence,” Phys. Plasmas, 12(10), 102304 (2005). https://doi.org/10.1063/1.2087587

P.N. Deka, and A. Borgohain, ”On unstable electromagnetic radiation through nonlinear wave–particle interactions in presence of drift wave turbulence,” J.Plasma Phys. 78(5), 515-524 (2012). https://doi.org/10.1017/S0022377812000207

P. Senapati, and P.N. Deka, ”Instability of Electron Bernstein Mode in Presence of DriftWave Turbulence Associated with Density and Temperature Gradients,” J. Fusion Energy, 39, 477–490 (2020). https://doi.org/10.1007/s10894-020-00269-y

J.K. Deka, and P.N. Deka, ”Emission of whistler mode radiation with kinetic Alfven wave in burning plasma,” Eur. Phys. J. Plus, 137, 1116 (2022). https://doi.org/10.1140/epjp/s13360-022-03330-1

A. Kumar, R. Gupta, and J. Sharma, ”Electromagnetic Weibel instability in spatial anisotropic electron–ion plasmas,” AIP Advances, 12(6), 065013 (2022). https://doi.org/10.1063/5.0092835

M. Nambu, Laser Part. Beams, ”A new maser effect in plasma turbulence,” 1, 427 (1983). https://doi.org/10.1017/S0263034600000513

V.N. Tsytovich, ”Mechanism for wave absorption or amplification in stochastic acceleration of particles,” Sov. Phys. JETP, 62, 483-488 (1985). http://www.jetp.ras.ru/cgi-bin/dn/e_062_03_0483.pdf

S.P. Gary, Theory of Space Plasma Microinstabilities, (Cambridge University Press, Cambridge, UK, 1993).

M. Nambu, ”Interaction between the Electron-Cyclotron Emissions at (n+1/2)Ωe and the Ring-Current Protons in Space,” Phys. Rev. Lett. 34, 387 (1975). https://doi.org/10.1103/PhysRevLett.34.387

M. Nambu, S. Bujarbarua, and S.N. Sarma, ”Plasma maser theory for magnetized plasma,” Phys. Rev. A, 35, 798 (1987). https://doi.org/10.1103/PhysRevA.35.798

L.D. Landau, ”On the vibration of the electronic plasma,” J. Phys. USSR, 10, 25 (1946).

T.H. Stix, Waves in Plasma, ()AIP, New York, 1992).

N.A. Krall, and A.W. Trivelpiece, Principles of Plasma Physics, (McGraw Hill Kogakusha Ltd., New York, 1973). https://doi.org/10.1119/1.1987587

S. Ichimaru, Basic Principles Of Plasma Physics: A Statistical Approach. 1st ed. (CRC Press, 1973). https://doi.org/10.1201/9780429502118

F. Chen, Introduction to Plasma Physics, (Plenum Press, New York, 1974).

M. Singh, P.N. Deka, ”Plasma-maser instability of the ion acoustics wave in the presence of lower hybrid wave turbulence in inhomogeneous plasma,” Pramana - J. Phys. 66, 547–561 (2006). https://doi.org/10.1007/BF02704498

T.J. Bradley, S.W. Cowley, G. Provan, G.J. Hunt, E.J. Bunce, et al., ”Field-Aligned Currents in Saturn’s Nightside Magnetosphere: Subcorotation and Planetary Period Oscillation Components During Northern Spring,” J. Geophys. Res. 123, 3602-3636 (2018). https://api.semanticscholar.org/CorpusID:54949745

P.N. Deka, and A. Borgohain, ”Amplification of ion acoustic wave in an inhomogeneous plasma through nonlinear wave-particle interaction with drift wave turbulence,” Phys.Plasmas, 18, 042311 (2011). https://api.semanticscholar.org/CorpusID:120942154

X. Tang, C. Cattell, R. Lysak, L.B. Wilson, L. Dai, and S. Thaller, ”THEMIS observations of electrostatic ion cyclotron waves and associated ion heating near the Earth’s dayside magnetopause,” J. Geophys. Res. Solid Earth, 120(5), 3380-3392 (2015). https://doi.org/10.1002/2015JA020984

M. Rosenberg, and R. Merlino, ”Instability of higher harmonic electrostatic ion cyclotron waves in a negative ion plasma,” J. Plasma Phys. 75, 495-508 (2009). https://api.semanticscholar.org/CorpusID:11846857

V. Khaira, and G. Ahirwar, ”Dispersion relation of electrostatic ion cyclotron waves in multi-component magnetoplasma,” AIP Conf. Proc. 1670(1), 030016 (2015). https://doi.org/10.1063/1.4926700

S.P. Gary, ”Wave-particle transport from electrostatic instabilities,” Phys. Fluids, 23(6), 1193–1204 (1980). https://doi.org/10.1063/1.863120

M. Malingre, R. Pottelette, N. Dubouloz, P.A. Lindqvist, G. Holmgren, and B. Aparicio, ”Sporadic electromagnetic emissions in the Akr frequency range associated with electrostatic plasma turbulence,” Geophys. Res. Lett. 19, 1339-1342 (1992). https://doi.org/10.1029/92GL01154

J. Ben´aˇcek, M. Karlick´y and L.V. Yasnov, ”Temperature dependent growth rates of the upper-hybrid waves and solar radio zebra patterns,” A&A, 598, A106 (2017). https://doi.org/10.1051/0004-6361/201629717

A.B. Zylstra, O.A. Hurricane, D.A. Callahan, A.L. Kritcher, J.E. Ralph, H.F. Robey, J.S. Ross, et al., ”Burning plasma achieved in inertial fusion,” Nature, 601(7894), 542–548 (2022). https://doi.org/10.1038/s41586-021-04281-w

Published
2023-12-02
Cited
How to Cite
Mundhra, R., & Deka, P. (2023). Instability of Ion Cyclotron Waves (ICWS) at the Expense of Lower Hybrid Drift Waves (LHDWS) Turbulence Energy. East European Journal of Physics, (4), 54-65. https://doi.org/10.26565/2312-4334-2023-4-06