Вивчення структурних і електронних властивостей інтеркальованих перехідних металевих дихалкогенидних компаундів MTiS2 (M = Cr, Mn, Fe) за допомогою теорією функціональної щільності
Анотація
In the present work, we have studied intercalated Transition Metal Dichalcogenides (TMDC) MTiS2 compounds (M = Cr, Mn, Fe) by Density Functional Theory (DFT) with Generalized Gradient Approximation (GGA). We have computed the structural and electronic properties by using first principle method in QUANTUM ESPRESSO computational code with an ultra-soft pseudopotential. A guest 3d transition metal M (viz; Cr, Mn, Fe) can be easily intercalated in pure transition metal dichalcogenides compound like TiS2. In the present work, the structural optimization, electronic properties like the energy band structure, density of states (DoS), partial or projected density of states (PDoS) and total density of states (TDoS) are reported. The energy band structure of MTiS2 compound has been found overlapping energy bands in the Fermi region. We conclude that the TiS2 intercalated compound has a small band gap while the doped compound with guest 3d-atom has metallic behavior as shown form its overlapped band structure.
Завантаження
Посилання
K. Motizuki, and N. Suzuki, Phys. New Mater., Springer Series in Material Sciences Volume 27, Ed. by F. E. Fujita, 106-138 (1994), https://doi.org/10.1007/978-3-662-00461-6_5.
N. Suzuki, Y. Yamasaki, K. Motizuki, J. De Physique. Solid State Phys. C. 8, 49201-49202 (1998), https://doi.org/10.1051/jphyscol:1988887.
Y.-S. Kim, J. Li, I. Tanaka, Y. Koyama, and H. Adachi, Mat. Trans. Jim. 41(8), 1088-1091 (2000), https://www.jim.or.jp/journal/e/pdf3/41/08/1088.pdf
Q. Bin, Z. Guo-Hua, LI Di, W. Jiang-Long, Q. Xiao-Ying, Z. Zhi, Phys. Lett. 24, 1050-1053 (2007), https://doi.org/10.1088/0256-307X/24/4/056.
T. Yamasaki, N. Suzuki, K. Motizuki, J. Phys. C: Solid State Phys. 20, 395-404 (1987), https://doi.org/10.1088/0022-3719/20/3/010.
Y. Sharma, S. Shukla, S. Dwivedi, and R. Sharma, Adv. Mater. Lett. 6(4), 294-300 (2015). https://doi.org/10.5185/amlett.2015.5608.
R.H. Friend, and A.D. Yoffe, Adv. Phys. 36, 1-94 (1987), https://doi.org/10.1080/00018738700101951.
J.A. Wilson, and A.D. Yoffe, Adv. Phys. 18, 193-335 (1969), https://doi.org/10.1080/00018736900101307.
V.B. Zala, A.M. Vora, and P.N. Gajjar, AIP Conf. Proc. 2100, 020027(1)-020027(4) (2019), https://doi.org/10.1063/1.5098581.
H.S. Patel, V.A. Dabhi, A.M. Vora, In: Singh D., Das S., Materny A. (Eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, 236, 389-395 (2019), https://doi.org/10.1007/978-981-15-0202-6_30.
V.A. Dabhi, H.S. Patel, and A.M. Vora, AIP Conf. Proc, 2224 (2020) 030003(1)-030003(4), https://doi.org/10.1063/5.0000484.
H.S. Patel, V.A. Dabhi and A.M. Vora, AIP Conf. Proc, 2224 (2020) 030006(1)-030006(4), https://doi.org/10.1063/5.0000485.
T. Matssushita, S. Suga, and A. Kimuta, Phys. Rev. B. 60, 1678-1686 (1999), https://doi.org/10.1103/PhysRevB.60.1678.
Y. Ueda, H. Negishi, and M. Koyana, M. Inoue, Solid State Comm. 57, 839-842 (1986), https://doi.org/10.1016/0038-1098(86)90188-2.
J.P. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Perderson, D. Singh, and C. Fiolhais, Phys. Rev. B. 48, 6671-6687 (1993), DOI: https://doi.org/10.1103/PhysRevB.46.6671.
P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, and L.D. Marks, WIEN2k. J. Chem. Phys. 152, 074101(1)-074101(30) (2020), https://doi.org/10.1063/1.5143061.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.
http://www.quantum-espresso.org/pseudopotential
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, and A. Dal Corso, J. Phys. Condens. Matter, 21, 395502 (2009), https://doi.org/10.1088/0953-8984/21/39/395502.
W. Kohn, L.J. Sham, Phys. Rev. 140, A1133-A1138 (1965), DOI: https://doi.org/10.1103/PhysRev.140.A1133.
http://nisihara.wixsite.com/burai.
C.M. Fang, R.A. De Groot, C. Hass, Phys. Rev. B. 56, 4455-4463 (1947), https://doi.org/10.1103/PhysRevB.56.4455.
Авторське право (c) 2021 Vandana B. Parmar, Aditya M. Vora
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).