Study of Structural and Electronic Properties of Intercalated Transition Metal Dichalcogenides Compound MTiS2 (M = Cr, Mn, Fe) by Density Functional Theory
Abstract
In the present work, we have studied intercalated Transition Metal Dichalcogenides (TMDC) MTiS2 compounds (M = Cr, Mn, Fe) by Density Functional Theory (DFT) with Generalized Gradient Approximation (GGA). We have computed the structural and electronic properties by using first principle method in QUANTUM ESPRESSO computational code with an ultra-soft pseudopotential. A guest 3d transition metal M (viz; Cr, Mn, Fe) can be easily intercalated in pure transition metal dichalcogenides compound like TiS2. In the present work, the structural optimization, electronic properties like the energy band structure, density of states (DoS), partial or projected density of states (PDoS) and total density of states (TDoS) are reported. The energy band structure of MTiS2 compound has been found overlapping energy bands in the Fermi region. We conclude that the TiS2 intercalated compound has a small band gap while the doped compound with guest 3d-atom has metallic behavior as shown form its overlapped band structure.
Downloads
References
K. Motizuki, and N. Suzuki, Phys. New Mater., Springer Series in Material Sciences Volume 27, Ed. by F. E. Fujita, 106-138 (1994), https://doi.org/10.1007/978-3-662-00461-6_5.
N. Suzuki, Y. Yamasaki, K. Motizuki, J. De Physique. Solid State Phys. C. 8, 49201-49202 (1998), https://doi.org/10.1051/jphyscol:1988887.
Y.-S. Kim, J. Li, I. Tanaka, Y. Koyama, and H. Adachi, Mat. Trans. Jim. 41(8), 1088-1091 (2000), https://www.jim.or.jp/journal/e/pdf3/41/08/1088.pdf
Q. Bin, Z. Guo-Hua, LI Di, W. Jiang-Long, Q. Xiao-Ying, Z. Zhi, Phys. Lett. 24, 1050-1053 (2007), https://doi.org/10.1088/0256-307X/24/4/056.
T. Yamasaki, N. Suzuki, K. Motizuki, J. Phys. C: Solid State Phys. 20, 395-404 (1987), https://doi.org/10.1088/0022-3719/20/3/010.
Y. Sharma, S. Shukla, S. Dwivedi, and R. Sharma, Adv. Mater. Lett. 6(4), 294-300 (2015). https://doi.org/10.5185/amlett.2015.5608.
R.H. Friend, and A.D. Yoffe, Adv. Phys. 36, 1-94 (1987), https://doi.org/10.1080/00018738700101951.
J.A. Wilson, and A.D. Yoffe, Adv. Phys. 18, 193-335 (1969), https://doi.org/10.1080/00018736900101307.
V.B. Zala, A.M. Vora, and P.N. Gajjar, AIP Conf. Proc. 2100, 020027(1)-020027(4) (2019), https://doi.org/10.1063/1.5098581.
H.S. Patel, V.A. Dabhi, A.M. Vora, In: Singh D., Das S., Materny A. (Eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, 236, 389-395 (2019), https://doi.org/10.1007/978-981-15-0202-6_30.
V.A. Dabhi, H.S. Patel, and A.M. Vora, AIP Conf. Proc, 2224 (2020) 030003(1)-030003(4), https://doi.org/10.1063/5.0000484.
H.S. Patel, V.A. Dabhi and A.M. Vora, AIP Conf. Proc, 2224 (2020) 030006(1)-030006(4), https://doi.org/10.1063/5.0000485.
T. Matssushita, S. Suga, and A. Kimuta, Phys. Rev. B. 60, 1678-1686 (1999), https://doi.org/10.1103/PhysRevB.60.1678.
Y. Ueda, H. Negishi, and M. Koyana, M. Inoue, Solid State Comm. 57, 839-842 (1986), https://doi.org/10.1016/0038-1098(86)90188-2.
J.P. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Perderson, D. Singh, and C. Fiolhais, Phys. Rev. B. 48, 6671-6687 (1993), DOI: https://doi.org/10.1103/PhysRevB.46.6671.
P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, and L.D. Marks, WIEN2k. J. Chem. Phys. 152, 074101(1)-074101(30) (2020), https://doi.org/10.1063/1.5143061.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.
http://www.quantum-espresso.org/pseudopotential
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, and A. Dal Corso, J. Phys. Condens. Matter, 21, 395502 (2009), https://doi.org/10.1088/0953-8984/21/39/395502.
W. Kohn, L.J. Sham, Phys. Rev. 140, A1133-A1138 (1965), DOI: https://doi.org/10.1103/PhysRev.140.A1133.
http://nisihara.wixsite.com/burai.
C.M. Fang, R.A. De Groot, C. Hass, Phys. Rev. B. 56, 4455-4463 (1947), https://doi.org/10.1103/PhysRevB.56.4455.
Copyright (c) 2021 Vandana B. Parmar, Aditya M. Vora
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).