Структурні, електронні, оптичні та магнетичні властивості сполук Хіслера Co2CrZ (Z = Al, Bi, Ge, Si)
Анотація
У цій роботі ми вивчили структурні, електронні, оптичні та магнітні властивості сполук Co2CrZ (Z = Al, Bi, Ge, Si) за допомогою двох різних методів, один – це метод повноцінної лінеаризованої розширеної плоскої хвилі (FP-LAPW) реалізований у WIEN2k, а другий – псевдопотенційний метод, реалізований у Atomistic Tool Kit-Virtual NanoLab (ATK-VNL). Відповідні заборонені зони для Co2CrZ (Z = Al, Bi, Ge, Si) знаходяться біля рівня Фермі 0,696, 0,257, 0,602 і 0,858 еВ, що реалізовано в коді WIEN2k і показують 100% спінову поляризацію. Крім того, було виявлено, що ці сполуки є ідеально напівметалічними феромагнітами (HMF). Однак вищезгадані сполуки показують нульові заборонені зони в коді ATK-VNL. Обчислений методом FP-LAPW магнітний момент цих сполук Co2CrZ (Z = Al, Bi, Ge, Si) становить 3,06, 4,99, 3,99 і 3,99 µB відповідно. Однак у коді ATK-VNL відповідний магнітний момент цих сполук становить 3,14, 5,08, 4,11 та 4,08 µB. Оптичні властивості відіграють важливу роль для розуміння природи матеріалу, чи можна його використовувати як пристрій оптоелектроніки. Обчислені з оптичних спектрів комплексні діелектричні функції з використанням WIEN2k становлять 312,70 і 141,991, 299,812 і 111,368, 288,127 і 106,342, 290,688 і 99,095 для сполук Co2CrZ (Z = Al, Bi, Ge, Si) відповідно. Максимальні втрати енергії для вище зазначених сполук спостерігаються між 11,4 до 13еВ. Значення показника заломлення для сполук Co2CrZ (Z = Al, Bi, Ge, Si) спостерігаються як 18.104, 17.602, 17.252 і 17.289 відповідно. В спектрі оптичної провідності різкий пік спостерігається при 1,6 - 2,3еВ.
Завантаження
Посилання
Fr. Heusler and E. Take, Trans. Faraday Soc. 8, 169-184 (1912), http://dx.doi.org/10.1039/TF9120800169.
J. Li, Y. Li, G. Zhou, Y. Sun, and C. Q. Sun, Appl. Phys. Lett. 94, 242502 (2009), https://doi.org/10.1063/1.3156811.
F. Casper, T. Graf, S. Chadov, B. Balke and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012), https://doi.org/10.1088/0268-1242/27/6/063001.
R.A. De Groot, F.M. Muller, P. G.Van Engen and K.H.J. Buschow, Phys. Rev. Lett. 50, 2024-2027 (1983), https://doi.org/10.1103/PhysRevLett.50.2024.
S. A. Khandy, I. Islam, D. C. Gupta and A. Laref, Full Heusler alloys (Co2TaSi and Co2TaGe) as potential spintronic materials with tunable band profiles, J. Solid State Chem. 270, 173-179 (2019), https://doi.org/10.1016/j.jssc.2018.11.011.
T. Graf, C. Felser and S.S.P. Parkin, Prog. Solid State Chem. 39, 1-50 (2011), https://doi.org/10.1016/j.progsolidstchem.2011.02.001.
M. Zipporah, P. Rohit, M. Robinson, M. Julius, S. Ralph and K. Arti, AIP Advances 7, (2017) 055705, https://doi.org/10.1063/1.4973763.
J. Kubler, G. H. Fecher, and C. Felser, Phys. Rev. B, 76, 024414 (2007), https://doi.org/10.1103/PhysRevB.76.024414.
Z.Q. Bai, Y.H. Lu, L. Shen, V. Ko, G.C. Han and Y.P. Feng, J. Appl. Phys. 111, 093911 (2012), https://doi.org/10.1063/1.4712301.
V. Ko, G. Han, J. Qiu, and Y. P. Feng, Appl. Phys. Lett. 95, (2009) 202502, https://doi.org/10.1063/1.3263952.
C. Felser, L. Wollmann, S. Chadov, G.H. Fecher, and S.S.P. Parkin, APL Mater. 3, 041518 (2015), https://doi.org/10.1063/1.4917387.
Z. Bai, L. Shen, G. Han and Y.P. Feng, Spin 2, 1230006 (2013), https://doi.org/10.1142/S201032471230006X.
V. Sharma and G. Pilania, J. Magn. Magn. Mater. 339, 142150 (2013), https://doi.org/10.1016/j.jmmm.2013.03.008.
D.P. Rai, A. Shankar, Sandeep, M.P. Ghimire and R.K. Thapa, J. Theor. Appl. Phys. 7, 1-6 (2013), https://doi.org/10.1186/2251-7235-7-3.
G.H. Fecher, H.C. Kandpal, S. Wurmehl, and C. Felser, J. Appl. Phys. 99, 08J106 (2006), https://doi.org/10.1063/1.2167629.
M. Tas, E. Sasıoglu, C. Friedrich, S. Blugel and I. Galanakis, J. Appl. Phys. 121 (2017) 053903, https://doi.org/10.1063/1.4975351.
H.C. Kandpal, G.H. Fecher and C. Felser, Journal of Physics D: Applied Physics, 40(6), (2007), 1587-1592, https://doi.org/10.1088/0022-3727/40/6/S01.
K. Seema, N.M. Umran and R. Kumar, J. Supercond. Nov. Magn. 29, 401-408 (2016), https://doi.org/10.1007/s10948-015-3271-7.
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz in: WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, editor: K. Schwarz (Technical Universitatwien, Austria, 2001), ISBN 3-9501031-1-2.
J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.
E. Sjostedt, L. Nordstrom and D.J. Singh, 114, 15-20 (2000), https://doi.org/10.1016/S0038-1098(99)00577-3.
Atomistix ToolKit-Virtual Nanolab (ATK-VNL), QuantumWise Simulator, Version. 2014.3, http://quantumwise.com/.
Y.J. Lee, M. Brandbyge, J. Puska, J. Taylor, K. Stokbro and M. Nieminen, Electron transport through monovalent atomic wises, Phys. Rev. B, 69, 125409 (2004), https://doi.org/10.1103/PhysRevB.69.125409.
H.J. Monkhorst and J.D. Pack, Phys. Rev. B, 13, 5188-519 (1976), https://doi.org/10.1103/PhysRevB.13.5188.
F.D. Murnaghan, Proc. Natl. Acad. Sci. USA, 30, 244-247 (1944), https://doi.org/10.1073/pnas.30.9.244.
D.P. Rai and R.K. Thapa, J. Alloys Comp. 542, 257-263 (2012), https://doi.org/10.1016/j.jallcom.2012.07.059.
S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov and C. Felser, Appl. Phys. Lett. 88, 032503 (2006), https://doi.org/10.1063/1.2166205.
R. Jain, N. Lakshmi, V.K. Jain, V. Jain, A.R. Chandra and K. Venugopalan, J. Magn. Magn. Mater. 448, 278-286 (2018), https://doi.org/10.1016/j.jmmm.2017.06.074.
S. Sharma, A.S. Verma and V.K. Jindal, Materials Research Bulletin 53, 218-233 (2014), https://doi.org/10.1016/j.materresbull.2014.02.021.
Авторське право (c) 2020 Сухендер, Лаліт Мохан, Судеш Кумар, Діпак Шармаc, Аджай Сінгх Верма
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).