Electronic, Optical, Elastic and Magnetic Properties of Co2VZ (Z= As, B, In, Sb) Full Heusler Compounds
Abstract
Here in, we have investigated electronic, optical, elastic and magnetic properties of Co2VZ (Z= As, B, In, Sb) full Heusler compounds by using two different computational methods. One is full potential linearized augmented plane wave (FP-LAPW) method as implemented in WIEN2k and second one is pseudo potential method as implemented in Atomistic Tool Kit-Virtual NanoLab (ATK-VNL). All these compounds shows zero band gaps in majority spin channel in both computational codes and in minority-spin conduction band or valence band crosses the Fermi level. Magnetic moment calculated by these compounds Co2VZ (Z= As, B, In, Sb) are 3.64 and 3.76, 2.00 and 1.97, 1.99 and 1.99, 3.96 and 3.82µB in WIEN2k and ATK-VNL simulation codes respectively. Optical properties of these compounds such as reflectivity, refractive index, excitation coefficient, absorption coefficient, optical conductivity and electron energy loss have been analyzed. Absorption coefficient and electron energy-loss function values are increases as we increase the value of energy. Absorption and reflection are inversely proportional to each other at same instant of time. Pugh’s ratio B/G is greater than 1.75 for Co2VZ (Z= B, In, Sb) compounds showing ductile in nature, but B/G value for Co2VAs is less than 1.75, so this compound is brittle in nature . Values of Cauchy pressure (CP = C12 – C44) derived and these compounds Co2VZ (Z= As, B, In, Sb) shows metallic nature.
Downloads
References
Fr. Heusler, W. Starck, and E. Haupt, Verh. Deutsch. Phys. Ges. 5(12), 220 (1903), https://archive.org/details/ verhandlungende33unkngoog/page/n177/mode/2up.
Fr. Heusler, and E. Take, Trans. Faraday Soc. 8, 169-184 (1912), https://doi.org/10.1039/TF9120800169.
R.A. De Groot, F.M. Muller, P.G. Van Engen, and K.H.J. Buschow, New class of materials: half-metallic ferrowmagnets, Phys. Rev. Lett. 50, 2024-2027 (1983), https://doi.org/10.1103/PhysRevLett.50.2024.
A. Aguayo, G. Murrieta, J. Magn. Magn. Mater. 323, 3013-3017 (2011), https://doi.org/10.1016/j.jmmm.2011.06.038.
M.I. Katsnelson, V.Y. Irkhin, L. Chioncel, A.I. Lichtenstein, and R.A. de Groot, Rev. Mod. Phys., 80, 315-378 (2008), https://doi.org/10.1103/RevModPhys.80.315.
S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science, 294, 1488-1495 (2001), https://doi/org/10.1126/science.1065389.
I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323-410 (2004), https://doi.org/10.1103/RevModPhys.76.323.
C.M. Fang, G.A. Wijs, and R.A. de Groot, J. Appl. Phys. 91, 8340-8344 (2002), https://doi.org/10.1063/1.1452238.
S. Wurmehl, G. H. Fechel, H. C. Kandpal, V. Ksenofontov, C. Felser, and H. Lin, Appl. Phys. Lett. 88, 032503 (2006), https://doi.org/10.1063/1.2166205.
M. A. Tanaka, Y. Ishikawa, Y. Wada, S. Hori, A. Murata, S. Horii, Y. Yamanishi, K. Mibu, K. Kondou, T. Ono, and S. Kasai, J. Appl. Phys. 111, 53902 (2012), https://doi.org/10.1063/1.3688324.
L. Wollmann, S. Chadov, J. Kubler, and C. Felser, Phys. Rev. B, 90, 214420 (2014), https://doi.org/10.1103/PhysRevB.90.214420.
Z. Wen, T. Kubota, T. Yamamoto, and K. Takanashi, Sci. Rep. 5, 18387 (2016), https://doi.org/10.1038/srep18387.
X.P. Wei, J.B. Deng, G.Y. Mao, S.B. Chu, and X.R. Hu, Intermetallics, 29, 86-91 (2012), https://doi.org/10.1016/j.intermet.2012.05.002.
Z. Ren, Y. Liu, S. Li, X. Zhang, and H. Liu, 34, 251-259 (2016), https://doi.org/10.1515/msp-2016-0043.
S.N. Holmes, and M. Pepper, J. Supercond. 16, 191-194 (2003), https://doi.org/10.1023/A:1023294314785.
S. Ishida, S. Akazawa, Y. Kubo, and J. Ishida, J. Phys. F: Met. Phys. 12, 1111 (1982), https://doi.org/10.1088/0305-4608/12/6/012.
E. Shreder, S.V. Streltsov, A. Svyazhin, A. Makhnev, V.V. Marchenkov, A. Lukoyanov, and H.W. Weber, J. Phys.: Condens. Matter, 20, 045212 (2008), https://doi.org/10.1088/0953-8984/20/04/045212.
K. Seema, N.M. Umran, and R. Kumar, J. Supercond. Nov. Magn. 29, 401-408 (2016), https://doi.org/10.1007/s10948-015-3271-7.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, in: WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, edited by K Schwarz (Technical Universitatwien, Austria, (2001), ISBN 3-9501031-1-2.
Synopsys, Inc., 690 East Middlefield Road, Mountain View, CA, 94043, Atomistix ToolKit-Virtual Nanolab (ATK-VNL), QuantumWise Simulator, Version. 2014.3 [Online]. Available: http://quantumwise.com/
H.J. Monkhorst, and J.D. Pack, Phys. Rev. B, 13, 5188-5192 (1976), https://doi.org/10.1103/PhysRevB.13.5188.
N. Xing, Y. Gong, W. Zhang, J. Dong, and H. Li, Comput. Mater. Sci. 45, 489-493 (2009), https://doi.org/10.1016/j.commatsci.2008.11.008.
F.D. Murnaghan, Proc. Natl. Acad. Sci. USA. 30, 244-247 (1944), https://dx.doi.org/10.1073%2Fpnas.30.9.244.
C. Felser, G. Fecher, and B. Balke, Angewandte Chemie International Edition, 46, 668-699 (2007), https://doi.org/10.1002/anie.200601815.
Z.Y. Deng, and J.M. Zhang, Journal of Magnetism and Magnetic Materials, 397, 120-124 (2016), https://doi.org/10.1016/j.jmmm.2015.08.089.
T. Lantri, S. Bentata, B. Bouadjemi, W. Benstaali, B. Bouhafs, A. Abbad, and A. Zitouni, J. Magn. Magn. Mater. 419, 74-83 (2016), https://doi.org/10.1016/j.jmmm.2016.06.012.
S. Sharma, A.S. Verma, and V.K. Jindal, Mater. Res. Bull. 53, 218-233 (2014), https://doi.org/10.1016/j.materresbull.2014.02.021.
C.M.I. Okoye, J. Physics: Condensed Matter, 15, 5945–5958 (2003), https://doi.org/10.1088/0953-8984/15/35/304.
R. Hill, Proc. Phys. Soc. A, 65, 349-354 (1952), https://doi.org/10.1088/0370-1298/65/5/307.
Copyright (c) 2020 Sukhender Sukhender, Lalit Mohan, Sudesh Kumar, Shiv R. Bhardwaj, Ajay Singh Verma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).